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Abstract
We present a realtime and reliable continuous collision detection (CCD) algorithm between triangulated models
that exploits the floating point hardware capability of current CPUs and GPUs. Our formulation is based on
Bernstein Sign Classification that takes advantage of the geometry properties of Bernstein basis and Bézier curves
to perform Boolean collision queries. We derive tight numerical error bounds on the computations and employ
those bounds to design an accurate algorithm using finite-precision arithmetic. Compared with prior floating-
point CCD algorithms, our approach eliminates all the false negatives and 90− 95% of the false positives. We
integrated our algorithm (TightCCD) with physically-based simulation system and observe speedups in collision
queries of 5− 15X compared with prior reliable CCD algorithms. Furthermore, we demonstrate its benefits in
terms of improving the performance or robustness of cloth simulation systems.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics—Animation

1. Introduction

Collision detection is an important component of physically
based simulation systems, including cloth, hair, and finite-
element simulation. Many of these underlying simulation
algorithms perform continuous collision detection (CCD),
which tests for collisions between two discrete instances.
Some of the more widely used algorithms in this regard are
based on linearly interpolating motion between the vertices
of each object. In that case, the CCD query between two
triangles reduces to 15 elementary tests, each of which cor-
responds to finding the roots of a cubic polynomial [Pro97].

It is important to perform reliable CCD queries for many
physically based simulations that can provide some accuracy
guarantees on the underlying computations. It is well-known
that even a single missed collision can affect the accuracy of
the entire cloth simulation system [BFA02]. Most prior CCD
algorithms are implemented using finite-precision arithmetic
and this can result in two kinds of errors: a false negative
that occurs when the CCD algorithm misses a collision; and
a false positive that occurs when the CCD algorithm con-
servatively classifies a non-colliding instance as a collision.

Figure 1: Funnel.We use our CCD algorithm, TightCCD,
for collision detection and response for cloth simulation. We
highlight its performance on complex benchmarks with mul-
tiple layers. As compared to prior CCD algorithms, TightC-
CD improves the performance and reliability of the cloth
simulation system.

Many of these errors result when the underlying algorithm
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use error tolerances along with floating-point arithmetic to
perform elementary computations.

Many approaches have been proposed to overcome these
accuracy or error tolerance problems that arise in the CCD
computations. The most reliable algorithms are based on ex-
act computations [BEB12] that can perform reliable queries
with no false negatives or false positives. Recently, Tang et
al. [TTWM14] presented another exact algorithm based on
Bernstein sign classification that offers 10− 20X speedups
over [BEB12]. Both these methods are based on an exac-
t computation paradigm [Yap04] and use extended precision
libraries to perform accurate CCD computations. In practice,
these exact arithmetic operations can be expensive for real-
time applications. Furthermore, it can be difficult to imple-
ment such exact arithmetic operations or libraries on GPUs
or embedded processors. The second category of accurate
solutions for CCD computations are based on performing
floating-point error analysis and using appropriate error tol-
erances [Wan14]. This approach can be used on any pro-
cessors that support IEEE floating-point arithmetic opera-
tions. The resulting CCD algorithm (SafeCCD) eliminates
false negatives altogether but can still result in a high num-
ber of false positives, i.e. can be very conservative. These
false positives can affect the performance and robustness of
collision response computations.

Main Results: In this paper, we present a faster algorith-
m to perform robust CCD computations using floating point
arithmetic. Our formulation is based on Bernstein sign clas-
sification (BSC) to perform CCD computations [TTWM14].
Instead of performing exact arithmetic operations for ele-
mentary tests, we perform a detailed error analysis on the un-
derlying arithmetic operations and derive tight error bound-
s. These error bounds exploit the geometric properties of
the Bézier curves and their control polygons. The overal-
l algorithm (TightCCD) is simple and performs only ad-
dition, subtraction, multiplication, and comparison opera-
tions. Based on these error bounds, we can completely e-
liminate false negatives and significantly reduce the num-
ber of false positives. We have implemented our algorith-
m on CPUs and GPUs and highlight its performance for
cloth simulation and finite-element (FEM) simulation. Com-
pared with the original BSC algorithm [TTWM14], we ob-
serve 5− 15X speedup. Furthermore, our error bounds and
the floating point algorithm yield a 90− 95% reduction in
the number of false positives compared with a prior floating-
point based accurate CCD algorithm [Wan14]. We also high-
light the benefits of TightCCD in terms of improving the
overall performance and reliability of cloth simulation sys-
tems.

Organization: The rest of the paper is organized as fol-
lows: We survey prior work on CCD computations in Sec-
tion 2. We briefly review the BSC-based CCD algorithm in
Section 3. We present our novel floating-point rounding er-
ror analysis of BSC in Section 4. We present our TightCCD

algorithm in Section 5 and highlight its performance in Sec-
tion 6.

2. Related Work

In this section, we offer a brief overview of prior work
on CCD and high-level culling algorithms. There is exten-
sive work on efficient CCD algorithms for different types
of models. These include fast algorithms for rigid model-
s [RKC02, KR03], articulated models [ZRLK07], and de-
formable models [VT94,GKJ∗05,HF07,TMY∗11] and most
of them use the constant velocity assumption between the t-
wo discrete instances. All these algorithms perform 15 ele-
mentary tests for each triangle pair to compute the first time-
of-contact using cubic root finding algorithms. Other classes
of CCD algorithms for triangulated models are based on con-
servative local advancement [TKM09]. All these approaches
are prone to floating-point errors and numerical tolerances.
Recently, Wang [Wan14] provided a useful approach to im-
prove their reliability based on forward error analysis for el-
ementary tests. It includes derivation of tight error bounds
for floating-point computation and these bounds are used to
eliminate false negatives and reduce false positives. In many
ways, we use similar ideas and derive tight error bounds on
the BSC formulation for elementary tests [TTWM14]. We
exploit more geometric properties of BSC to derive tighter
error bounds than [Wan14] and highlight its benefits.

To reduce the number of CCD queries between triangle
pairs, many high-level culling techniques have been pro-
posed. The simplest culling algorithms compute geometric
bounds using bounding volume hierarchies (BVHs) to re-
duce the number of false positives. Other culling methods
are based on surface normal bounds [VT94,Pro97,MKE03],
self-collision culling [SPO10,PKS10,ZJ12] and eliminating
redundant tests between the vertices and edges of adjacent
triangles [CTM08, TYM08, TCYM09, WB06]. Our reliable
algorithm can be combined with any high-level culling algo-
rithm as long as it can perform accurate computations.

3. BSC-based CCD

In this section, we briefly review the BSC-based CCD al-
gorithm, and highlight some cases that can result in false
negatives without exact geometric arithmetic.

3.1. CCD Formulation

Provot [Pro97] reduced CCD computation to coplanarity
tests and inside tests. Tang et al. [TTWM14] combined the
coplanarity and inside tests to find a common root of a sys-
tem of algebraic equations and inequalities (i.e., a semi-
algebraic set). Their approach employs properties of the
Bernstein basis and Bézier curves and reduces elementary
tests to performing a series of sign evaluations of algebra-
ic expressions. Let’s consider the Vertex/Face (VF) elemen-
tary test query. The same formulation is also used for the
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Edge/Edge (EE) elementary test query. The VF query is re-
duced to checking whether the following semi-algebraic set
has a real solution t ∈ [0,1]:

{
Y (t) = 0 (1)

G1(t)≥ 0,G2(t)≥ 0,G3(t)≥ 0 (2)

where Y (t) is a cubic polynomial and G1(t),G2(t),G3(t) are
three quartic polynomials. The equation (1) is a cubic equa-
tion that corresponds to the coplanarity test and the three in-
equalities (Equations (2)) are quartic equations that are used
to perform the inside test.

3.2. Classification, Coplanarity Test and Inside Test

Classification: Before performing the coplanarity test, BSC-
based CCD uses Sign(Y ′(0)), Sign(Y ′(1)), Sign(Y ′′(0)) and
Sign(Y ′′(1)) to classify the cubic polynomial Y (t) into three
categories based on whether it has an inflection point or ex-
treme point in domain [0,1]. Y ′(t) and Y ′′(t) are its first or-
der derivative and second order derivative, respectively. The
operator Sign() is used to compute the sign of a variable.
Sign(Y ′′(0)) 6= Sign(Y ′′(1)) indicates an inflection point
(shown in branch (a) of Figure 2); otherwise, there is no
inflection point. Similarly, Sign(Y ′(0)) 6= Sign(Y ′(1)) indi-
cates an extreme point (shown in branch (b) of Figure 2);
otherwise, there is no extreme point.
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Figure 2: Classification and Coplanarity Test. A cubic curve
in branch (a) can be divided into two parts at its inflection
point, and each part may correspond either to branch (b),
where the curve has an extreme point, or branch (c). After
classification, BSC-based CCD performs a coplanarity test
for branches (b) and (c). Finally, there are five cases of roots.

Coplanarity Test: If Y (t) belongs to branch (b) in Fig-
ure 2 and Sign(Y (0)) = Sign(Y (1)) in the meantime, BSC-
based CCD must compute the sign of Y (tex), in which tex is
the root of Y ′(t), (i.e., the extreme point). If Sign(Y (tex)) 6=
Sign(Y (0)), there are two roots; otherwise, there is no root.
The overall Root-Finding Lemma for this case is given in [T-
TWM14]. The coplanarity test for other situations is very
simple: Sign(Y (0)) 6= Sign(Y (1)) means one root, and oth-
erwise there is no root.

Inside Test: If Y (t) has a root tY in domain [0,1] after the

coplanarity test, the next step is to determine the sign of the
quartic polynomial G(t) at tY , i.e., Sign(G(tY )). Using the
Polynomial Decomposition Theorem in [TTWM14], the in-
side test can be reduced to determine the signs of the two
linear polynomials with the same constraint. Let L(t) be one
of the linear polynomials, Sign(L(tY )) can be computed by
Sign Determination Theorems I and II in [TTWM14]. If al-
l three inequalities corresponding to Equations (2) are true,
along with the constraint of Equation (1), the inside test re-
ports a collision.
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Figure 3: Inside Tests. (a) corresponds to Sign Determina-
tion Theorem I. (b) corresponds to Sign Determination The-
orem II.

3.3. Degenerate Cases

Without exact geometric arithmetic computation, Sign()
function is unable to compute an exact value because of
floating-point rounding errors. This tends to happen more
frequently in degenerate configurations. When continuous
collision detection is used in physically based simulation,
two typical degenerate cases arise. One corresponds to the
fact when the distance between the features is very smal-
l. The other arises when a vertex is close to an edge of the
triangle in terms of checking for coplanarity in a VF query.

d0
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vertex

(a) Small Distance (b) Close to Edge

Figure 4: Degenerate Cases in a VF test. (a) The distances
between the vertex and the face are very small. (b) During
the coplanarity test, the vertex is close to one edge of the
triangle.

BSC-based CCD algorithm is also prone to these degen-
erate cases when it is implemented using floating-point op-
erations (i.e. no exact computations).

• In the Classification computation, degenerate cases ap-
pear where Y ′(0)≈ 0, Y ′(1)≈ 0, Y ′′(0)≈ 0 and Y ′′(1)≈
0, which may result in an incorrect classification and lead
to errors in the coplanarity test.

• In the Coplanarity test, false negatives might arise due to
small distances, such as Y (0)≈0, Y (1)≈0 and Y (tex)≈0.

• In the Inside test, a typical degenerate case involves a ver-
tex that is close to an edge, which corresponds specifically
to tL ≈ tY in BSC-based CCD. In Figure 3, if tL ≈ tY , then
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Y (tL)≈ 0, which may result in imprecise Sign(L(tY )) and
Sign(G(tY )).

4. Rounding Error Bounds

In this section, we present our novel floating-point round-
ing error analysis to derive a tight rounding error bound for
floating-point operations. Eventually this bound is used to
determine the sign of a floating-point number.

4.1. Sign Classification with Rounding Errors

One impact of rounding errors is that they may affect the
sign of a floating-point number, as shown in Figure 5.

Given a floating-point number, let its exact value be r and
its rounded floating-point value be r̂. If σr is a tight bound on
a corresponding rounding error, then |r̂− r| ≤ σr. The oper-
ator Sign() returns the exact sign of a floating-point number
because it uses an exact geometric computation paradigm.
Using floating point hardware with rounding errors, we com-
pute the sign of a floating-point number using the following
rule:

Sign(r) =





1, r̂ ≥ σr, i.e., r is certainly positive;

0, |r̂|< σr, r may be positive or negative;

−1, r̂ ≤−σr, i.e., r is certainly positive.

Thus, it is important to compute an accurate bound on the
rounding error for sign classification.

0 0

σ 

r rr rr

(a) (b)

σ

r̂ r̂

Figure 5: Rounding Errors. The figure shows how round-
ing errors affect the sign of a floating-point number. In (a),
r̂ <−σ, and r < 0. In (b), −σ < r̂ < 0, and Sign(r) is unde-
termined. The case that r̂ > 0 can be derived similarly. We
use these bounds in our reliable algorithm.

4.2. Evaluating Error Bounds

In modern floating-point computers, the machine epsilon for
a single precision floating-point number is ε = 2−23. For a
double precision floating-point number, it is ε = 2−52.

Property of Rounding: Floating-point computation con-
verts a real number r into a floating-point number r̂ us-
ing a rounding process, and the relative rounding error sat-
isfies the bound |r̂−r|

|r| < ε, and |r|ε is the corresponding
rounding error bound. While using IEEE 754 standard, basic
floating-point arithmetic operations are rounded so that such
a bound holds. In other words, given an exact arithmetic op-
erator ∗ and its floating-point counterpart ~, the condition
|a~b−a∗b|< |a∗b|ε must be met [Wan14].

Rounding errors are accumulated when there are multi-
ple floating-point operations, such as add, subtract, multiply
and divide. In general, it is non-trivial to compute tight er-
ror bounds. In [Wan14], Wang proposed an error estimation
theorem based on forward error analysis, which we refer to
as SafeBound in the rest of the paper.

SafeBound: If f is a function made of add, subtract, and
multiply operations, then | f | ≤ B f and | f̂ − f | ≤ B f [(1 +

ε)k f − 1], in which B f and k f are calculated using rules in
Figure 6.
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(b) Multiply

Figure 6: SafeBound. A node is in the format of (B,k). If a
floating-point number r has no rounding error, then kr = 0.

SafeBound is simple and efficient for deriving bounds on
accumulated rounding errors, but the bounds increase rapid-
ly (i.e. become conservative) when there are many opera-
tions, including subtraction involving two numbers with the
same sign. In addition, it is not suitable to get a good bound
for the divide operation. So we propose an alternate method
to compute tighter rounding errors bound. To distinguish it
from SafeBound, we refer to our novel approach as Tight-
Bound.

TightBound: Given two floating-point numbers, let their
floating-point values be a and b, respectively. If both have
no rounding errors, then |(a~b)−(a∗b)|≤|a∗b|ε. Because
the exact value of a∗b is unknown, we can just evaluate the
rounding error bound by its floating-point value a~ b. By
extending the inequality properly,

−(|a~b|+ |a∗b|ε)≤ a∗b≤ |a~b|+ |a∗b|ε, (3)

it is easy to get |a ∗ b| ≤ |a~b|
1−ε . So the tightest rounding er-

ror bound for this single operation is σ(a∗b) = |a~ b| ε
1−ε

(shown in Figure 7(a)).

If the two numbers have rounding errors, let σa and σb be
the corresponding bounds on rounding errors, respectively.
We consider various add, subtract, multiply and divide oper-
ations in following theorem.

Theorem 1: Let σa∗b be a tight bound on rounding error of
a ∗ b, where ∗ could be add, subtract, multiply and divide
operation. σa∗b is computed by rules in Figure 7.

The proof can be found in Appendix.

Let σT be the bound derived from TightBound and σS

be the bound derived from SafeBound, respectively. We can
compare TightBound with SafeBound based on the follow-
ing theorem.
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(f) add/substact

Ba, ka Bb, kb

Ba×Bb, ka + kb +1

(g) multiply

Ba, 0 Bb, 0

Ba +Bb, 1

(h) add/subtract

Ba, 0 Bb, 0

Ba×Bb, 1

(i) multiply





Y (t) = (pt −at) ·nt = 0 CoplanarityTest
G1(t) = ((bt −pt)× (ct −pt)) ·nt ≥ 0
G2(t) = ((ct −pt)× (at −pt)) ·nt ≥ 0
G3(t) = ((at −pt)× (bt −pt)) ·nt ≥ 0



 InsideTest





Y (t) = 0
G1(t)≥ 0
G2(t)≥ 0
G3(t)≥ 0
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(d) Substract

/ 1

a, 0 b, 0

a~b, |a~b| ε
1−ε

(a)

a, σa b, σb

a⊗b, |a⊗b| ε
1−ε +aσb +bσa +σaσb

(b) multiply

a, σa b, σb

a⊕b, |a⊕b| ε
1−ε +σa +σb

(c) add

a, σa b, σb

a	b, |a	b| ε
1−ε +σa +σb

(d) subtract

a, σa b, σb

a/b, |a/b| ε
1−ε +

||b|−σb|σa+(|a|+σa)σb
||b|−σb||b|

(e) divide

Ba, ka Bb, kb

Ba +Bb, max(ka,kb)+1

(f) add/substact

Ba, ka Bb, kb

Ba×Bb, ka + kb +1

(g) multiply

Ba, 0 Bb, 0

Ba +Bb, 1

(h) add/subtract

Ba, 0 Bb, 0

Ba×Bb, 1

(i) multiply





Y (t) = (pt −at) ·nt = 0 CoplanarityTest
G1(t) = ((bt −pt)× (ct −pt)) ·nt ≥ 0
G2(t) = ((ct −pt)× (at −pt)) ·nt ≥ 0
G3(t) = ((at −pt)× (bt −pt)) ·nt ≥ 0



 InsideTest





Y (t) = 0
G1(t)≥ 0
G2(t)≥ 0
G3(t)≥ 0

submitted to Pacific Graphics (2015)

(e) Divide

Figure 7: TightBound. A floating-point number is in the
format of (L,R), where L represents its floating-point value
and R represents its rounding error bound. R = 0 indicates
that there is no rounding error. ~ represents floating-point
arithmetic operations (add, subtract, multiply). We use�/�
to represent floating-point division, and �� to represent exact
division.

Theorem 2: Given a floating-point expression exp, we get:
σT

exp ≤ σS
exp.

Let Ba and Bb be bounds for a and b, both having no
rounding errors, in SafeBound, respectively. To remain safe,
it must satisfy Ba +Bb ≥ max( |a⊕b|

1−ε ,
|a	b|
1−ε ) and Ba×Bb ≥

|a⊗b|
1−ε . In general, the bound in SafeBound for an arbitrary

floating-point number r must be no less than |r|
1−ε , i.e., Br ≥

|r|
1−ε . In contrast, Wang [Wan14] uses a large uniform bound
for all floating-point variables involved in computation.

Clearly, σT
a~b is tighter than the σS

a~b if two floating-point
numbers a and b have no rounding error. Based on this point,
we can suppose that σT

a ≤ σS
a and σT

b ≤ σS
b if a and b are

with rounding errors. And it is easy to get the inference that
σT

a~b ≤ σS
a~b. The detail derivation process can be found

in Appendix. According to mathematical induction, we can
conclude that σT

exp ≤ σS
exp for a floating-point expression.

5. TightCCD

In this section, we present our TightCCD algorithm, which
is the combination of TightBound and BSC-based CCD al-
gorithm. We use the new Sign() operator with tight rounding
error bounds derived in Section 4 to capture degenerate cas-
es existing in a BSC-based CCD algorithm. By performing
certain conservative operations in degenerated cases, we en-
sure that our TightCCD algorithm remains reliable using on-
ly floating-point arithmetic. In addition, we can control the
number of false positives at a very low level based on certain
tight bounds on rounding errors.

5.1. Bounds for Critical Variables

In a coplanarity test, the cubic polynomial in Equation (1)
can be formulated in terms of the following Bernstein formu-
lation: Y (t) = k0 ∗B3

0(t)+k1 ∗B3
1(t)+k2 ∗B3

2(t)+k3 ∗B3
3(t),

where B3
i (t) is the cubic Bernstein basis. The derivation of

k0,k1,k2 and k3 is given in [TTWM14]. Let σk0 ,σk1 ,σk2

and σk3 be the bounds on the rounding errors in these quan-
tities, respectively. Given these formulas to compute the
derivatives of Y (), we compute the rounding error bounds
for Y (0), Y (1), Y ′(0), Y ′(1), Y ′′(0) and Y ′′(1). According
to our rounding error formulation (TightBound), we obtain
the bounds shown in the following table. The rounding er-
ror bounds for other intermediate variables can be derived
similarly and also based on the TightBound.

/ 1

Variables Values Bounds
Y (0) k0 σk0

Y (1) k0 σk3

Y ′(0) 3(k1−k0) 6|k1− k0| ε
1−ε +3σk1 +3σk0

Y ′(1) 3(k3−k2) 6|k3− k2| ε
1−ε +3σk2 +3σk3

Y ′′(0)
6(k2−

2k1 + k0)

(12|k2−2k1 +k0|+6|k2−2k1|+
12|k1|) ε

1−ε +6(σk0 +σk2 +2σk1)

Y ′′(1)
6(k3−

2k2 + k1)

(12|k3−2k2 +k1|+6|k3−2k2|+
12|k2|) ε

1−ε +6(σk3 +σk1 +2σk2)

submitted to Pacific Graphics (2015)

Although bounds derived from SafeBound [Wan14] are
not shown here, we use two statistical charts (Figure (8))
to demonstrate that the bounds of these variables derived
from TightBound are tighter than their bounds derived from
SafeBound.
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SafeBound

TightBound

(b)

Figure 8: Comparison of TightBound and SafeBound: (a)
illustrates the bounds derived using different approaches for
the six critical variables in a BSC-based CCD algorithm;
(b) shows the detailed bounds for a single collision test. This
figure shows that the order of magnitudes of bounds derived
from TightBound are roughly 10e−20, while that of bounds
derived from SafeBound are roughly 10e−14.

5.2. Conservative Operations

Classification: In classification, using our new Sign() with
rounding error bounds, Sign(Y ′′(0)) = 0, Sign(Y ′′(1)) = 0,
Sign(Y ′(0)) = 0 or Sign(Y ′(1)) = 0 may happen. If these
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9: Classification Based on the Roots of Y(t). In
(a),(b),(d),(e), Y (t) has only one root in domain [0,1]. In
(c),(f),(g),(h), Y (t) has two roots in domain [0,1]. In (d)
and (e), Sign(Y (0)) = 0. In (f), Sign(Y (1)) = 0. In (g),
Sign(Y (0)) = 0 and Sign(Y (1)) = 0. In (h), the sign of the
extreme point is undetermined. All small distance cases are
to be captured.

zero signs are not handled properly, the classification may
miss an inflection point or an extreme point, which would
yield false negatives to CCD. Thus, we perform two types of
conservative operations as follows:

1. when Sign(Y ′′(0)) = 0 or Sign(Y ′′(1)) = 0, there is an
inflection point in the domain [0,1].

2. when Sign(Y ′(0)) = 0 or Sign(Y ′(1)) = 0, there is an ex-
treme point in the domain [0,1].

Coplanarity Test: In a coplanarity test, the zero sign-
s must be handled properly. If there is no extreme point
in domain [0,1], we conservatively report a root when
Sign(Y (0)) = 0 or Sign(Y (1)) = 0. A challenging case oc-
curs when there is an extreme point in domain [0,1] mean-
while Sign(Y (0)) = 0 or Sign(Y (1)) = 0. To use the Root-
Finding Lemma to handle this case, we must preprocess the
signs of certain critical variables.

1. Ensure Sign(Y (0)) = Sign(Y (1)).

– If Sign(Y (0)) = Sign(Y (1)) = 0, then simply report t-
wo roots.

– If Sign(Y (0)) = 0 and Sign(Y (0)) 6= 0, then set
Sign(Y (0)) = Sign(Y (1)).

2. Ensure Sign(Y ′(0)) 6= Sign(Y ′(1)).

– If Sign(Y ′(0)) = 0 and Sign(Y ′(1)) 6= 0, then set
Sign(Y ′(0)) =−Sign(Y ′(1)).

– The troublesome case is when Sign(Y ′(0)) =
Sign(Y ′(1)) = 0. Using Y ′(t) to decompose Y (t), we
obtain Y (t) = Y ′(t) · S(t) + T (t) in which S(t) and
T (t) are two linear polynomials. In this case, Y (t) ≈
T (t) in domain [0,1]. If Sign(T (0)) = Sign(T (1)) = 0,
then simply report two roots. Otherwise, the sign of

the extreme point is equal to the sign of T (0), i.e.,
Sign(Y (tex)) = Sign(T (0)).

After completing the computation described above, the in-
stance that we need to address corresponds to branch (b)
in Figure 2. In this case, the signs of all the pivotal vari-
ables are non-zero. The overall procedure of root finding
for this case is given in Algorithm. 1. Figure 9 shows that
there are eight different classifications of roots of Y (t) af-
ter the coplanarity test. We must mainly address (a), (b) and
(c) in our modified inside test algorithm. By simply setting
Sign(Y (0)) = −Sign(Y (1)), (d) can be transformed to (a)
and (e) can be transformed to (b). Similarly, (f), (g) and (h)
can be transformed to (c).

Algorithm 1 Coplanarity Test with Conservative Operations
1: Input: Y (t) Output: Number of roots.
2: Ensure Sign(Y (0)) = Sign(Y (1)).
3: Ensure Sign(Y ′(0)) 6= Sign(Y ′(1)).
4: Root-Finding Lemma. [TTWM14]
5: if Y (t) has no root then
6: if Sign(Y (0)) = 0 or Sign(Y (1)) = 0 then
7: return 1; //Conservatively
8: end if
9: end if

Inside Test: In the algorithm for the inside test, we com-
bine conservative operations with Sign Determination Theo-
rems I and II, as shown in Algorithm 2. In fact, we need only
to take account of the case in which Sign(Y (tL))) = 0, where
tL is the root of the linear polynomial L(t) (shown in Figure
3). Sign(Y (tL))) = 0 implies tL is very close to one root of
Y (t) and also corresponds to the degenerate case of Close to
Edge. In this case, we use some conservative operations to
overcome these errors.

1. Case one: Y (t) has only one root. Sign(L(tY ))← 0.
2. Case two: Y (t) has two roots.

– If Sign(Y ′(tL)) = 0, then Sign(L(tY0)) ← 0 and
Sign(L(tY1))← 0.

– If Sign(Y ′(tL)) = Sign(Y ′(0)), then Sign(L(tY0))← 0
and Sign(L(tY1))← Sign(L(1)).

– If Sign(Y ′(tL)) = Sign(Y ′(1)), then Sign(L(tY0)) ←
Sign(L(0)) and Sign(L(tY1))← 0.

Finally, we obtain the signs of three quartic polynomials
under the condition of a cubic equation. If one of their signs
is definitely negative, we can conclude that there is no colli-
sion. Otherwise, we report a collision, which may also turn
out to be a false positive.

5.3. False Positives

Since we have introduced rounding error bounds and con-
servative operations into BSC-based CCD algorithm, our ap-
proach may report false positives, especially for degenerate
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(a) Virtual Clothes (b) Twisting (c) Car

Figure 10: Benchmarks: We use these cloth and FEM simulation benchmarks to evaluate the performance of our CCD algo-
rithm. TightCCD can perform reliable collision queries in these benchmarks.

Algorithm 2 Inside Test with Conservative Operations
1: Input: G(t), Y (tY ) = 0 //G(t) is quartic, Y (t) is cubic.
2: Output: Sign(G(tY ))
3: Using Polynomial Decomposition Theorem to get two

linear polynomials L1(t) and L2(t).
4: for i = 1,2 do
5: if Sign(Y (tLi)) = 0 then
6: Conservative operations;
7: else
8: Sign Determination Theorems I or II. [TTWM14]
9: end if

10: end for
11: Sign(G(tY )) = Sign(L1(tY ))Sign(L2(tY )).

cases. In coplanarity tests with conservative operations, S-
mall Distance, shown as Figure 9(d), (e), (f), (g), (h), may
also result in false positives. In the Inside Test with con-
servative operations, Close to Edge, which corresponds to
Sign(Y (tL)) = 0, may also contribute to false positives.

6. Results

We use our tight error bounds to perform conservative oper-
ations in three stages of a BSC-based CCD algorithm: classi-
fication, the coplanarity test and the inside test. Implement-
ing these modified algorithms is simple and involves only
a few operations and comparisons. The resulting algorith-
m (TightCCD) is implemented using IEEE double precision
arithmetic. Compared with the original BSC-based CCD al-
gorithm [TTWM14], TightCCD results in 5− 15X speedup
on a single core. However, the original algorithm can pro-
vide exact results on the CPU using an extended precision
library, whereas our formulation is slightly conservative and
can return false positives. Compared with the SafeCCD al-
gorithm that also uses error bounds [Wan14], TightCCD is

slightly slower but can reduce the number of false positives
by 90−95% because we use tighter error bounds.

6.1. Performance

We evaluated the performance of TightCCD with some cloth
simulations and FEM simulation benchmarks, as shown
in Figure 10, using a standard PC (Intel i7-4770 CPU
@3.4GHz, 4 GB RAM, 64-bits Windows 7 OS, NVIDIA
GeForce GTX 780 GPU). This includes a CPU-based C++
implementation of BSC-exact [TTWM14] that uses Tight-
Bounds and IEEE double precision arithmetic. Figure 11
highlights the performance of TightCCD algorithms on d-
ifferent benchmarks, on CPUs and GPUs. We also compare
the performance of TightCCD with the following algorithms
and implementation:

• BSC This is the implementation of the exact algorithm
of [TTWM14], published by the authors (http://gamma.
cs.unc.edu/BSC/). It uses a conservative culling test to
accelerate the computation. There are two version of BSC,
BSC-float and BSC-exact. BSC-float is based on floating-
point arithmetic so it may report both false positives and
false negatives. In contrast, BSC-exact can eliminate both
false positives and false negatives because it uses inter-
val arithmetic-based filters and exact expansions for exact
arithmetic operations.

• SafeCCD: This is the implementation of the floating-
point-based cubic root solver CCD algorithm [Wan14]
with error analysis. (http://web.cse.ohio-state.
edu/~whmin/Wang-2014-DCC/SAFE\_CCD.zip). It us-
es a forward rounding error to compute bounds and
(SafeBound in Section 4.2) to ensures that no false nega-
tives are reported. However, it can result in false positives.

Furthermore, we make some modifications to BSC-float
based on our error bound computation (TightBound). We
use these conservative operations to eliminate false negatives
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Virtual
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Figure 11: Performance and Comparison: We highlight the performance of six different CCD algorithms on several different
benchmarks on a single CPU core and a Nvidia GeForce GTX 780 GPU. BSC-exact only runs on the CPU and it can eliminate
both false negatives and false positives. In contrast, BSC-float runs on GPUs and may result in false negatives and false posi-
tives, as it uses no error bounds. The other four algorithm are based on error bounds, so that they can eliminate false negative
but report some false positives. We also replaced the error bound computation in the SafeCCD algorithm with TightBounds
and observe significant reduction in the number of false positives. Compared with BSC-exact, TightCCD is 5− 15X faster. As
compared with SafeCCD, TightCCD is less conservative, i.e. reports fewer false positives.

and report as few false positives as possible based on tight
rounding error bounds. As a result, we obtain our TightC-
CD algorithm, a new version of the BSC. Furthermore, we
also use the rounding error estimation theorem proposed by
[Wan14] (SafeBound) to produce another version of the B-
SC called BSC with SafeBound, which also reports no false
negatives but more false positives than TightCCD. We also
try our TightBound in SafeCCD, which results in SafeCCD
with TightBound, another version of SafeCCD.

Figure 11, we can observe that BSC-exact algorithm can
eliminate false positives by using exact geometric arith-
metic, while the other four algorithms (including our TightC-
CD algorithm) can yield false positives. We observe appre-
ciable speedups using our BSC with rounding error bound-
s based on floating-point arithmetic (i.e. TightCCD) vs the
BSC-exact CCD algorithm with exact geometric arithmetic.
In the benchmarks, Virtual Cloth and Twisting our TightC-
CD is a little slower than SafeCCD, but TightCCD results
in significantly fewer false positives. Although SafeBound
is also suitable for BSC-based CCD, BSC with SafeBound
reports more false positives and is little slower than TightC-
CD. In addition, TightBound can also be combined with
the SafeCCD algorithm. On one hand, we observe SafeC-
CD with TightBound reports the minimum number of false
positives among the four conservative algorithms; on the
other hand, it is the slowest amongst the conservative algo-
rithms implemented using floating-point arithmetic. By us-
ing our TightBound in the benchmark Virtual Cloth, TightC-
CD reduces the false positives by 90% and SafeCCD with
TightBound reduces the false positives by almost 99%, com-
pared with the original SafeCCD algorithm [Wan14]. In the
benchmarks Twisting, Funnel and Car, TightCCD reduces
the number of false positives by 95% and more.

Figure 11 also shows the performance of five floating-
point arithmetic based CCD algorithms on a GPU. We ob-
serve that BSC-float reports some false negatives without
rounding error bounds, while the other four algorithms with
rounding error bounds can eliminate false negatives. The
false positives reported by these four algorithms on a GPU
are the same as those reported on the CPU. Due to the par-
allelism of a GPU, CCD algorithm implementations on the
GPU are much faster than CPU-based implementations.

6.2. Cloth Simulation: Overall Benefits

We integrated TightCCD, SafeCCD and BSC-exact into the
same cloth simulation system and use them for collision de-
tection. As the number of false positives increase, this results
in more time spent in the collision response computation. We
observe different performance of resulting cloth simulation
by based on three CCD algorithms. We use the benchmark
Funnel with multiple layers of cloth to highlight the differ-
ences in the performance. In Figure 12, we observe two main
benefits of TightCCD over SafeCCD and BSC-exact. .

• Faster collision detection: TightCCD is much faster then
BSC-exact. This results in less time spent in collision
checking with TightCCD. On the other hand, the frac-
tion of time spent in collision handling with BSC-exact
is much higher..

• Faster and reliable collision response: As collisions are
detected, the cloth simulation algorithm responds to each
collision, until those triangles are in a non-penetrating s-
tate. If the underlying collision detection algorithm is very
conservative, i.e. reports many false positives, the colli-
sion response algorithm needs to perform many addition-
al iterations to compute non-penetrating configurations.
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Figure 12: Benefits for Cloth Simulation: We highlight the performance and reliability of cloth simulation system based on three
CCD algorithms: TightCCD, BSC-Exact, and SafeCCD. All the frame timings are reported in seconds. TightCCD and BSC-
exact are able to perform reliable collision detection and response computations. However, we observe up to 2.5X improvement
in the average frame time with TightCCD. In contrast, we observe some convergence problems (for few frames) with SafeCCD.
Due to a high number of false positives in SafeCCD, we observe slower convergece (or failed convergence) in terms of collision
response computations. Overall, TightCCD offers the best overall performance and reliability.

Figure 12 highlights the extra complexity of collision re-
sponse due to higher number of false positives, i.e. addi-
tional iterations and no convergence in some frames. We
observe this behavior with SafeCCD in our benchmarks.

6.3. Analysis

The notion of computing rounding errors is quite common
in scientific and geometric algorithms and has been brought
to the forefront by Wang [Wan14] with the SafeCCD algo-
rithm. We present a modified algorithm based on BSC that
computes tighter error bounds. In particular, we compute
bounds on the values of each variable involved in that algo-
rithm and use that for a modified coplanarity test and inside
test. Our main advantage is that we can compute tighter error
bounds. However, a slightly higher computational overhead
is involved computing these bounds on the rounding errors.
If there is no collision, the higher level culling algorithm
is able to discard most of those instances. The worst-case
arises when the cubic polynomial in a coplanarity test has
an inflection point. SafeCCD derives a formulation for the
rounding error bound for every intermediate variable, which
leads to a faster algorithm. Its drawback is that the rounding
error bounds are not very tight, and therefore there are more
false positives. We have highlighted the benefits in terms of
improved performance and reliability of the resulting cloth
simulation system.

7. Limitations, Conclusions and Future Work

We present a reliable algorithm for CCD computation that
is based on computing tight bounds on forward rounding er-
rors. We apply those bounds to various steps of the BSC-
based CCD algorithm and perform all the computations us-

ing IEEE floating point arithmetic. The modified algorith-
m performs conservative computations, which can result in
some false positives. We highlight its benefits compared with
prior reliable CCD algorithms and also demonstrate its ben-
efits on the cloth simulation system.

Our approach has a few limitations. Due to conservative
computations, our modified BSC-based CCD can result in
false positives and is not exact. Moreover, its computational
overhead is slightly greater than the approach presented by
Wang [Wan14].

There are many avenues for future work. It may be possi-
ble to make our approach less conservative. Furthermore, it
can be parallelized using the SIMD capabilities of GPUs and
used for other physically based simulation applications. Fi-
nally, we would use TightCCD for other dynamic simulation
systems.
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Appendix

In this section, we present some derivations and proofs.

Derivation of TightBound

If the two numbers a and b have rounding errors, let â and
b̂ be their rounded floating-point values and σa and σb be
the corresponding bounds on rounding errors, respectively.
We consider various add, subtract, multiply and divide oper-
ations in following theorem.

Theorem 1: Let σa∗b be a tight bound for a ∗ b, where ∗
could be add, subtract, multiply and divide operation.

Add: σa+b = |â ⊕ b̂| ε
1−ε + σa + σb (shown in Fig-

ure 7(c)). |(â⊕ b̂)− (a+ b)| ≤ |(â⊕ b̂)− (â+ b̂)|+ |â−
a|+ |b̂−b| ≤ |â⊕ b̂| ε

1−ε +σa +σb.
Subtract: subtract are similar to add in terms of error bound-

s. We could similarly obtain σ(a−b) = |â	 b̂| ε
1−ε +σa +

σb (shown in Figure 7(d)).
Multiply: σa×b = |â⊗ b̂| ε

1−ε + |â|σb +σa|b̂|+σaσb shown
in Figure 7(b)). |(â⊗ b̂)− (a× b)| ≤ |(â⊗ b̂)− (â×
b̂)|+ |â× (b̂− b)|+ |b̂× (â− a)|+ |b̂− b| × |â− a| ≤
|â⊗ b̂| ε

1−ε + |â|σb +σa|b̂|+σaσb.

Divide: σ a
b
= |â/b̂| ε

1−ε +
||b̂|−σb|σa+(|â|+σa)σb

||b̂|−σb||b̂|
(shown in

Figure 7(e)). |â/b̂− a
b | ≤ |â/b̂− â

b̂
|+ | â

b̂
− a

b̂
|+ |a(b−b̂)|

|bb̂| ≤
|â/b̂| ε

1−ε +
σa

|b̂| +
(|â|+σa)σb

||b̂|−σb||b̂|
. (It is only applicable for the

case when |b̂|> σb.)

Comparison between TightBound and SafeBound

Because SafeBound is not suitable for divide operations, we
take consideration only of add, subtract and divide oper-
ations in the following comparison. Let σT be the bound
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derived by TightBound and σS be the bound derived by
SafeBound, respectively.

Theorem 2: Given a floating-point expression only contain-
ing add, subtract and multiply operations, we get: σT

exp ≤
σS

exp.

Proof: Clearly, σT
a~b is tighter than the σS

a~b if two floating-
point numbers a and b have no rounding error. If they are
with rounding errors, we have σS

a = Ba[(1 + ε)ka − 1] and
σS

b = Bb[(1+ ε)kb − 1], respectively. According to the con-
clusions drawn above, it can briefly be supposed that σT

a ≤
Ba[(1+ ε)ka −1] and σT

b ≤ Bb[(1+ ε)kb −1].

• σT
a+b =

|a⊕b|ε
1−ε + σT

a + σT
b and σS

a+b = (Ba + Bb)[(1 +

ε)max(ka,kb)+1−1]. So σT
a+b≤ (Ba+Bb)ε+Ba[(1+ε)ka−

1]+Bb[(1+ ε)kb − 1] ≤ (Ba +Bb)[(1+ ε)max(ka,kb)+ ε−
1]≤ σS

a+b. The derivation for a−b is similar.

• σT
a×b =

|a⊗b|ε
1−ε +|b|σT

a +|a|σT
b +σT

a σT
b and σS

a×b =(Ba×
Bb)[(1 + ε)ka+kb+1−1]. So σT

a×b ≤ BaBbε + BbBa[(1 +

ε)ka −1]+BaBb[(1+ε)kb −1]+BaBb[(1+ε)ka −1][(1+
ε)kb −1] = BaBb[(1+ ε)ka+kb + ε−1]≤ σS

a×b.

According to mathematical induction, we can conclude that
σT

exp ≤ σS
exp for a floating-point expression.
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