
Pacific Graphics 2018
H. Fu, A. Ghosh, and J. Kopf
(Guest Editors)

Volume 37 (2018), Number 7

Parallel Multigrid for Nonlinear Cloth Simulation

Zhendong Wang1,2†, Longhua Wu2, Marco Fratarcangeli3, Min Tang1, and Huamin Wang2‡

1Zhejiang University, China
2The Ohio State University, USA

3Chalmers University of Technology, Sweden

(a) An early state (b) A middle state (c) A late state

Figure 1: The animation result of a funnel example with 120K vertices and 238K triangles, produced by a novel nonlinear adaptive multigrid
method. This method organically integrates nonlinearity adaptive smoothing into a geometric multigrid framework and it is compatible with
parallelization on the GPU. Thanks to this method, our simulator solves cloth dynamics for each frame of this example in 0.2 seconds, when
using a large time step ∆t = 1/90s.

Abstract
Accurate high-resolution simulation of cloth is a highly desired computational tool in graphics applications. As single-
resolution simulation starts to reach the limit of computational power, we believe the future of cloth simulation is in
multi-resolution simulation. In this paper, we explore nonlinearity, adaptive smoothing, and parallelization under a full
multigrid (FMG) framework. The foundation of this research is a novel nonlinear FMG method for unstructured meshes. To
introduce nonlinearity into FMG, we propose to formulate the smoothing process at each resolution level as the computation
of a search direction for the original high-resolution nonlinear optimization problem. We prove that our nonlinear FMG
is guaranteed to converge under various conditions and we investigate the improvements to its performance. We present
an adaptive smoother which is used to reduce the computational cost in the regions with low residuals already. Compared
to normal iterative solvers, our nonlinear FMG method provides faster convergence and better performance for both
Newton’s method and Projective Dynamics. Our experiment shows our method is efficient, accurate, stable against large time
steps, and friendly with GPU parallelization. The performance of the method has a good scalability to the mesh resolution,
and the method has good potential to be combined with multi-resolution collision handling for real-time simulation in the future.

CCS Concepts
•Computing methodologies → Physical simulation;

† wangzhendong@zju.edu.cn
‡ whmin@cse.ohio-state.edu

1. Introduction

Recently, the use of physics-based cloth simulation is exploding in
applications related to virtual dressing room, customizable fashion
design, and virtual human modeling. Many of these applications
desire physics-based cloth simulation be fast yet realistic, so as to

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

produce high-quality results without spending too much computa-
tional resource. The quality of cloth simulation is determined most-
ly by the mesh resolution and the simulation accuracy. The mesh
resolution affects not only the smoothness of fine wrinkles such as
those in Fig. 1, but also the locking issue, which restricts wrinkles
from happening in low-resolution simulation. The simulation accu-
racy measures how exactly the nonlinear simulation problem gets
solved in every time step. Without sufficient accuracy, the simu-
lation can cause various artifacts and fail to meet its requirement
in design and measurement-related applications. How to increase
the mesh resolution and improve the simulation accuracy without
introducing too much computational cost is the open problem in
physics-based cloth simulation that needs more investigation.

As it becomes more and more difficult for single-resolution simula-
tion to further explore computational power nowadays, we believe
the future of cloth simulation is in multi-resolution simulation. By
using a simulation hierarchy, multi-resolution simulation can effi-
ciently reduce low-frequency errors, which are expensive to handle
in high resolution. Perhaps the most popular and systematic way
of implementing this idea is known as multigrid. In general, there
are two types of multigrid methods: geometric multigrids, which
build the simulation hierarchy geometrically from a mesh hierar-
chy; and algebraic multigrids, which create the simulation hierar-
chy algebraically by collapsing the system matrix [TJM15]. While
multigrid methods are popular in mechanical engineering and com-
putational physics, their research and usage in computer graphics
is rather limited.

In this paper, we focus our research on the development of a nov-
el geometric multigrid method. The reason we favor geometric
multigrid over algebraic multigrid is because it is more convenient
for geometric multigrid to accept nonlinearity. Although algebraic
multigrid with smoothed aggregation [TJM15] is efficient in linear
cloth simulation with small time steps, it is not efficient when apply
it to nonlinear cloth simulation because the computational cost of
the aggregation phase is very high.

Nonlinearity is related to the simulation accuracy. Researchers have
been aware of the nonlinearity in cloth simulation for decades, but
most simulators still choose to solve a linearized system in every
time step. Mathematically equivalent to solving a nonlinear sys-
tem by one iteration of Newton’s method, this practice suffers from
error accumulation or divergence, when the time step is large. Re-
cently, Liu and colleagues [LBOK13] and Bouaziz and collabora-
tors [BML∗14] developed projective dynamics for fast simulation
of elastic solids under a specific nonlinear elastic model. Many re-
searchers [Wan15, NOB16,FTP16, WY16] pointed out that projec-
tive dynamics is a special case of nonlinear optimization methods
since then. Their research inspires us to consider multigrid from a
nonlinear optimization perspective and to develop a novel nonlinear
multigrid method.

Our research is focused on integrating nonlinearity, adaptive s-
moothing, and multigrid into the development of a novel simula-
tion method, for fast and accurate simulation of unstructured cloth
meshes. While each of these topics has been investigated individ-
ually, we would like to address their joint implementation under a
natural and unified framework. Our technical contributions can be
summarized as follows.

• Full multigrid. We propose to formulate our method under a
full multigrid (FMG) framework. The basic idea behind FMG
is to solve low-resolution simulation by multigrid and treat its
interpolated result as initialization to high-resolution simulation.

• Nonlinearity. We develop a novel nonlinear FMG method for
fast cloth simulation. A unique feature of this method is that it
considers the smoothing process at each resolution level as cal-
culating a search direction at different frequency rates. Since it
does not discretize the simulation problem at coarse levels as the
full approximation scheme (FAS) does, its performance cannot
be affected by the locking issue.

• Adaptive smoothing. Our adaptive smoother, implemented on
the GPU, allows computational power to be concentrated on the
regions with large residuals.

Our experiment reveals that the GPU implementation of the pro-
posed nonlinear adaptive FMG method is fast and stable, even
when it handles large time steps, as Fig. 1 shows. The performance
of the whole method has a good scalability to the mesh resolution,
as shown in Fig. 14.

2. Related Work

Physics-based cloth simulation The pioneer work by Baraff and
Witkin [BW98] has inspired graphics researchers to study physics-
based cloth simulation for decades. According to how planar e-
lasticity of cloth is represented, cloth simulation can use either
mass-spring systems [CK02, BMF03], continuum-based system-
s [WOR11, NSO12], or even yarn-based systems [KJM10, CLM-
MO14]. In recent years, graphics researchers have gained interests
in a variety of new topics related to the efficiency and the accura-
cy of cloth simulation, including elasticity measurement [WOR11,
MBT∗12], internal and external frictions [CFW13, MTB∗13], non-
linear elasticity [VMTF09, LBOK13, BML∗14], GPU-based im-
plementation [Wan15, FTP16], and collision handling [BFA02,
WTTM15, TWT∗16]. Being focused on solving the nonlinear sys-
tem raised in physics-based cloth simulation, our work is relative-
ly orthogonal to these research topics. Nevertheless, we hope our
method can serve as a basis for other cloth simulation research in
the future.

Adaptive refinement of unstructured meshes Adaptive mesh re-
finement has been an active research topic in physics-based simu-
lation recently. A detailed survey can be found in [MWN∗17]. In
this work, we are specifically interested in adaptive refinement of
unstructured meshes, since they are more suitable for represent-
ing irregular clothing shapes. A bottom-up approach of implement-
ing adaptive mesh refinement is to remesh a given coarse mesh
on the fly, by subdivision schemes [LV05, BD12] or edge opera-
tions [SLD09, NSO12]. The strength of the bottom-up approach
is it is free of pre-processing, which is highly desired in the sim-
ulation of tetrahedral meshes [WRK∗10, CWSO13]. On the other
hand, the approach is unfriendly with parallelization and its refine-
ment criteria are based on coarse simulation, which is inaccurate
at the first place. An alternative approach to adaptive mesh refine-
ment is to precompute a mesh hierarchy and then determine ac-
tive simulation regions locally at each resolution level, as experi-
mented in [WDGT01, DDCB01]. This approach is closely related

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

Mesh M0

Mesh M1

Mesh M2

Mesh M3

(a) A V-cycle (b) A full multigrid case

Figure 2: The structures of multigrid and full multigrid. Here •
represents smoothing, ◦ represents an exact solver, \ and / rep-
resent restriction and interpolation, and // represents high-order
interpolation.

to multigrid, which needs to build a mesh hierarchy as well. In fac-
t, geometric adaptivity is one of the goals set in the developmen-
t of full-approximation storage (FAS) multigrid [Bra77]. Otaduy
and colleagues [OGRG07] investigated this idea in the simulation
of unstructured tetrahedral meshes, together with adaptivity-aware
collision detection techniques.

Multi-resolution elastic body simulation Multi-resolution elas-
tic body simulation is naturally more difficult to develop for un-
structured meshes than structured ones [ZSTB10]. In the past, re-
searchers have studied multigrid simulation of thin shells [GTS02],
Newton-multigrid for nonlinear elastic solids [GW06], generic lin-
ear multigrid for unstructured surface meshes [AKS05], and lin-
ear multigrid for cloth simulation [ONW08, JCK∗13]. For fast ap-
proximation of elastic behaviors, graphics researchers have also s-
tudied handling positional constraints in a multi-resolution fash-
ion [Mül08, WOR10]. While their techniques share many similar-
ities with multigrid, they typically ignore pre-smoothing and run
only one resolution cycle.

3. Background

The multigrid technique was originally developed for speeding up
stationary iterative solvers, which tend to smooth the residual after
a few number of iterations. Its idea is to downsample the problem
after the residual gets smoothed each time, so that the smoothed
and down-sampled residual can be reduced faster on a coarse mesh.
A typical multigrid method contains four components: smoothing,
i.e., a few stationary iterations; restriction, which downsamples the
residual from a fine mesh to a coarse mesh; interpolation, which
upsamples the correction from a coarse mesh back to a fine mesh;
and solver, which solves the problem exactly at the coarsest level.
These components are organized into a V-cycle, as Fig. 2a shows.

3.1. Linear Multigrid

Let Ih+1
h and Ih

h+1 be the restriction and interpolation operators be-
tween two consecutive levels h and h+1. When the problem at the
finer level h is linear: Ahxh = bh, we can interpret the problem as:
xh = x(0)h + ch and Ahch = bh −Ahx(0)h = r(0)h , in which x(0)h is the

initial result, r(0)h is its initial residual, and ch is the correction to

x(0)h . In a coarse correction step, a multigrid method tries to estimate

ch by solving the problem at the coarser level: Ah+1ch+1 = r(0)h+1,

in which r(0)h+1 = Ih+1
h r(0)h . The coarse correction result ch+1 is then

Pre-Smoothing
on 𝐱ℎ

𝐫ℎ
(0) = 𝐛ℎ − 𝐀ℎ𝐱ℎ

(0)

𝐫ℎ+1
(0)

Restriction

𝐜ℎ+1
(0)Solve

𝐀ℎ+1𝐜ℎ+1
(0) = 𝐫ℎ+1

(0)

𝐱ℎ
(1) = 𝐱ℎ

(0) + 𝐜ℎ
(0)

𝐫ℎ+1
(0) = 𝐈ℎℎ+1𝐫ℎ

(0)
Interpolation
𝐜ℎ
(0) = 𝐈ℎ+1ℎ 𝐜ℎ+1

(0)

Post-Smoothing
on 𝐱ℎ

Figure 3: The two-level structure of a linear multigrid method. It
transfers the correction c and the residual r, rather than the solu-
tion x and the constant b, between the two levels.

upsampled by Ih
h+1 to obtain an estimation of ch at the finer level,

as Fig. 3 shows.

An important question is how to formulate Ah+1. One straight-
forward approach is to discretize the PDE problem on the coarse
grid and derive the coarse linear system directly. However, do-
ing this suffers from the inconsistency between the coarse linear
system and the fine linear system, especially the locking issue
in cloth simulation. Therefore, we choose to apply the Galerkin
condition: Ah+1 =

(
Ih

h+1
)T AhIh

h+1, with an additional assumption

Ih+1
h =

(
Ih

h+1
)T.

Interpolation and restriction The performance of linear multigrid
relies on the interpolation operator Ih

h+1. For an unstructured trian-
gle mesh {X0,T0}, in which X0 is the set of its vertices and T0 is
the set of its triangles, we first construct a mesh hierarchy, by re-
cursively clustering vertices and re-triangulating the surface area
in the 2D reference space. The result is a nested mesh hierarchy
satisfying: X0 ⊃ X1 ⊃ ... ⊃ XH . We typically reduce the number of
vertices by a factor of four from one level to another, and the coars-
est mesh has approximately 100 to 400 vertices. More details about
constructing a mesh hiearchy are in the Appendix.

Given the mesh hierarchy, we use the barycentric coordinates to
formulate a piecewise linear interpolation operator for every vertex
i ∈ Xh:

f (ui) =

{
fi, if i ∈ Xh+1,
Ba(ui) fa +Bb(ui) fb +Bc(ui) fc, otherwise, (1)

in which ui is vertex i’s reference position, a, b, and c are the ver-
tices of the triangle in Th+1 containing or close to vertex i in the
reference space, fa, fb, and fc are their function values, and Ba(ui),
Bb(ui), and Bc(ui) are their barycentric coordinates. We use this
linear interpolation operator to formulate the full rank matrix Ih

h+1
in the V-cycles for its simplicity and sparsity.

Smoothing While linear multigrid can use any stationary iterative
solver as its smoother, we choose to use symmetric Gauss-Seidel
in our method. This choice is not arbitrary and it is related to the
convergence condition of our nonlinear FMG method, as shown
in Subsection 4.2. To implement symmetric Gauss-Seidel on the
GPU, we apply the multi-coloring strategy [FTP16]. The symmetry
of Gauss-Seidel is achieved by handling colored vertices twice per
iteration: once in the forward color order and once in the backward
color order.

Solver We use sparse solvers by LU factorization to solve the linear
system at the coarsest level. In our experiment, we notice that it is

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

more efficient to use CPU solvers, such as MKL PARDISO. Since
the linear system at the coarsest level is small, the data transfer time
between the GPU and the CPU is negligible.

4. Our System

In this section, we will first introduce nonlinear cloth simula-
tion in Subsection 4.1. We will then introduce the full multigrid
(FMG) concept and generalize FMG into nonlinear FMG in Sub-
section 4.2, by formulating it as a line search method. We will ana-
lyze the convergence of nonlinear FMG and investigate the choices
involved in its implementation. In Subsection 4.3, we will present
an adaptive smoothing approach to accelerate our nonlinear FMG
method. In Subsection 4.4, we will discuss how to applied our non-
linear FMG method to Projective Dynamic and analyze its perfor-
mance. Finally, we will present how to handling collisions and con-
tacts in the nonlinear FMG in Subsection 4.5.

4.1. Nonlinear Cloth Simulation

Cloth is a kind of highly nonlinear elastic body. As presented
in [WY16], nonlinear elastic body simulation from time t to t + 1
can be formulated as an unconstrained nonlinear optimization prob-
lem: qt+1 = argmin ε(q),

ε(q) =
1

2h2 (q−qt −hvt)
T M(q−qt −hvt)+E(q), (2)

in which q ∈ R3N and v ∈ R3N be the vertex position and veloci-
ty vectors of cloth, M ∈ R3N×3N is the mass matrix, h is the time
step, E(q) is the total potential energy evaluated at q. The term
qt +hvt is the inertial and usually token as the initialization of de-
scent optimization methods. This nonlinear optimization problem
is usually solved by using the Newton’s method. However, it needs
to solve a linear system at each iteration. This would be very time
consuming when the resolution of cloth is high. Projective Dynam-
ics [LBOK13, BML∗14] overcomes this problem by solving this
optimization problem with a local step constraint projection and
a global step distance minimization. In the global step, projective
dynamics also needs to solve a linear system. But the system ma-
trix is constant, so it can be prefactored at initialization. Though
projective dynamics is very efficient, it usually suffers convergence
issue even using direct methods to solve the global step, as shown
in [Wan15]. We propose a novel nonlinear FMG method which can
be applied to both Newton’s method and projective dynamics to
improve their performance.

4.2. Nonlinear FMG

While V-cycles can be applied to solve the high-resolution prob-
lem immediately, they can be used in a better way, known as ful-
l multigrid (FMG). Its basic idea is to solve the coarser problem
sufficiently well first, interpolate the correction to the finer level
as initialization, and then solve the finer problem, as visualized in
Fig. 2b. The success of FMG depends on the quality of the initial-
ization interpolator. Since it is applied only once between two res-
olution levels, it can be more advanced than the linear interpolator
used in V-cycles, as explained in the following.

-4

-3

-2

-1

0

0 200 400 600 800 1000

Newton+PARDISO

Accelerated GS

FAS

Newton-FMG

Our Method

0 200 400 600 800 1000

Time (ms)

10
-3

10
-2

10
-1

10
0

10
-4

R
e
l
a
t
i
v
e
 E

r
r
o

r

-4

-3

-2

-1

0

0 200 400 600 800 1000

Newton+PARDISO

CG+SAMG

Accelerated GS

FAS

Newton-FMG

Our Method

10
-3

10
-2

10
-1

10
0

10
-4

R
e
l
a
t
i
v
e
 E

r
r
o

r

0 200 400 600 800 1000

Time (ms)

Figure 4: The convergence of several nonlinear methods in the
Sphere example with a 120K vertices cloth when using a large time
step ∆t = 1/30s. By default, we define the error as the relative ener-
gy loss: (ε(k)−ε∗)/(ε(0)−ε∗), in which ε(k) and ε(0) are the current
and initial energies, and ε∗ is the estimated minimal energy. We typ-
ically do not use the residual magnitude for evaluation purposes,
since it can fluctuate.

There are two typical approaches to introduce nonlinearity into
multigrid methods. The first approach, known as Newton-multigrid,
simply applies multigrid to solve the linearized systems produced
by Newton’s method. Since this approach relies entirely on New-
ton’s method, its performance becomes unsatisfactory when the
time step is large, as shown in Fig. 4. The other approach, known
as the full approximation scheme (FAS), transfers the positional so-
lution x, not the correction c, between two resolution levels. At
each level, FAS discretizes and solves the simulation problem for
new x directly. While FAS is effective in FEM simulation of tetra-
hedral meshes [OGRG07], its performance in cloth simulation is
inevitably affected by the locking issue in the coarse problem and
incorporating the discretization error into the residual does not help
much. As a result, FAS cannot benefit as much as our method from
multi-resolution cloth simulation, as Fig. 4 shows. We compare the
convergence of several nonlinear methods in Fig. 4, in which New-
ton+PARDISO and CG+SAMG are implemented on CPU, the oth-
er four methods are implemented on GPU. Newton’s method has
the lowest performance due to its large computational cost per iter-
ation; congugate gradient method with a SAMG (smoothed aggre-
gation multigrid) [TJM15] preconditioner, used as a linear solver
for Newton’s method, is not efficient either due to its difficulty in
parallelism; Gauss-Seidel method has difficulty in handling high-
resolution meshes even with Chebyshev acceleration; in contrast,
our method implemented on the GPU achieves the highest perfor-
mance.

Different from FAS and Newton-multigrid, our method can be fun-
damentally considered as a line search method for nonlinear op-
timization. The corrections at multiple resolution levels are the
search directions at various frequency rates for the original prob-
lem at the finest level. Since no coarse problem is involved, the
method is naturally free of the locking issue. Specifically, let x0 =
argminε(x0) be the original nonlinear optimization problem and
A0c0=r0 be the current linearized system, in which r0=−∇E is the
residual and A0 is the Hessian or Hessian approximation of ε(x0).
In Newton-FMG method, the system at each hth level Ahch = rh
keeps the same inside a linear FMG, which is used as a linear solver.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

𝐫ℎ+1

Restriction

𝒄ℎ+1
Solve

𝐀ℎ+1𝒄ℎ+1 = 𝐫ℎ+1

Interpolation
𝒄0 = 𝐈ℎ+10 𝒄ℎ+1𝐫ℎ+1 = 𝐈0ℎ+1𝐫0

𝐀0𝒄0 = 𝐫0
Update

Solve

𝐀ℎ𝒄ℎ = 𝐫ℎ

𝐀0𝒄0 = 𝐫0
Update

𝐀ℎ𝒄ℎ = 𝐫ℎ

Solve

Figure 5: The structure of our nonlinear FMG method. It updates
the system matrix and the residual at the finest level only. This helps
the method avoid the discretization error, i.e., the locking issue in
coarse simulation.

But in our nonlinear FMG, the system at each hth level Ahch = rh
can be updated and no longer linear. The downsampled version of
the finest system at the h-th level is:

Ahch = Ih
0r0, for Ah = Ih

0A0I0
h, (3)

in which Ih
0 = Ih

h−1...I
2
1I1

0 is also a full rank matrix. Equation 3 is not
solved exactly (except at the coarsest level), but smoothed. Let Ã−1

h
be a matrix representing the smoothing process, such that: ch =
Ã−1

h Ih
0r0. The interpolated correction at the finest level becomes:

c0 = I0
hch = I0

hÃ−1
h Ih

0r0. We apply this correction to x0 after proper
scaling, update the residual r0 (and the matrix A0 if needed), and
then find another correction at a different level, as Fig. 5 shows.

To ensure the convergence of the method, we must show c0 ·r0 > 0,
which is true if Ã−1

h is positive definite. In the following theorem,
we prove that if A0 and Ah are positive definite, then Ã−1

h must also
be positive definite for symmetric Gauss-Seidel. Furthermore, we
prove that Ã−1

h is also positive definite for symmetric Gauss-Seidel
with Chebyshev acceleration [GVL96] under the same condition.

THEOREM 4.1. Let Ax = b be a linear system and A be positive
definite. If x(0) = 0 and x(K) = Ã−1b is the result after K symmet-
ric Gauss-Seidel iterations, then Ã−1 must be positive definite. If
y(K) = Ã−1b is the result after K symmetric Gauss-Seidel itera-
tions with Chebyshev acceleration, then Ã−1 must be also positive
definite. The proof is in the Appendix A.

Like other line search methods, our method needs a good balance
between the convergence rate and the computational cost per search
for optimal performance. In the rest of the subsection, we will study
this balance from the calculations of A0 and b0. We will also dis-
cuss the implementation of backtracking line search.

4.2.1. The choices of the system matrix

The choices of the system matrix A0 affect the convergence speed,
but not the convergence guarantee, as long as A0 is positive def-
inite. In our system, we define A0 as the modified† Hessian ma-
trix, but we do not update every time a correction gets updated. In
other words, A0 is an Hessian matrix approximation since the last
update, which must still be positive definite. The question though

† The Hessian matrix of an elastic solid is often not positive definite. It
needs modifications to be positive definite. See [CK02, TSIF05] for more
details.

-4

-3

-2

-1

0

0 100 200 300 400 500 600

Once per level

Once per time step

Once per cycle

-3

-2

-1

0

0 250 500 750 1000

Once per level
Once per time step
Once per cycle

0 250 1000
Time (ms)

500 750

100

10-1

10-2

10-3

R
el

at
iv

e
E

rr
or

10-3

10-2

10-1

100

10-4

0 100 200 300 400 500 600
Time (ms)

R
el

at
iv

e
E

rr
or

Figure 6: Sphere example with a 120K vertices cloth using a
large time step ∆t = 1/30s. The convergence of our nonlinear FMG
method with different choices of the system matrix. It shows that the
optimal choice is to update the system matrix once per FMG cycle.

is how often should we perform the update? It is expected that we
should not update A0 at every resolution level, since that introduces
a large computational cost per search and slows down the system
performance, as shown in Fig. 6. On the other hand, if we update
A0 only once at the beginning of the time step, the method becomes
a nonlinear solver accelerated by a constant preconditioner matrix,
whose convergence rate is not optimal either.

Our idea is to restructure the V-cycles in our nonlinear FMG
method. Specifically, instead of running small V-cycles for coarse
problems multiple times first and then large V-cycles for fine prob-
lems, we propose to interleave small V-cycles with large V-cycles.
Intuitively, this can be considered as solving the whole problem by
multiple FMG cycles, each of which uses only one V-cycle at every
level, such as the one shown in Fig. 2b. We can then conveniently
update A0 at the beginning of every FMG cycle and Fig. 6 shows
this approach achieves a fast convergence speed. The reason we do
not use the standard FMG formulation is because it would be too
expensive to update A0 solely for small V-cycles. In contrast, our
formulation applies the same matrix update to both small and large
V-cycles, which allows small V-cycles to be more effective.

4.2.2. The choices of updating residual

The next question we would like to study is whether we should
incorporate nonlinearity into every level, or just a small number of
fine levels. The reason we have this question is because the interpo-
lation and the restriction can cause a nonneglectable computational
costs especially at coarse levels. If we restrict the recalculation of
the residual to fine levels only, we can effectively reduce these cost-
s. Intuitively, this can be considered as using linear multigrid to s-
mooth the problem at the bottom level. The question now becomes
whether the matrix representing the smoothing process of linear
multigrid is positive definite or not. The following theorem proves
that it is true, if pre-smoothing and post-smoothing are symmetric.

THEOREM 4.2. Suppose that the linear system is positive defi-
nite. If the matrices representing the pre-smoothing process and the
post-smoothing process at the same level are identical and positive
definite, then the matrix representing the whole smoothing process

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

-3

-2

-1

0

0 250 500 750 1000

Residual update at level 4

Residual update at level 0

Residual update at level 2

250 1000
Time (ms)

500 750

100

10-1

10-2

10-3

R
el

at
iv

e
E

rr
or

0

-4

-3

-2

-1

0

0 50 100 150 200 250 300

No residual update

Residual update outside vcycles

Residual update inside the last vcycle

10-3

10-2

10-1

100

10-4

0 50 100 150 200 250 300
Time (ms)

R
el

at
iv

e
E

rr
or

-4

-3

-2

-1

0

0 100 200 300 400 500 600

No residual update

Residual update outside vcycles

Residual update inside the last vcycle

10-3

10-2

10-1

100

10-4

0 100 200 300 400 500 600
Time (ms)

R
el

at
iv

e
E

rr
or

Figure 7: Sphere example with a 120K vertices cloth using a
large time step ∆t = 1/30s. The convergence of our nonlinear FMG
method with different choices of the residual update. It shows that
the optimal choice is to update the residual in the last biggest V-
Cycle.

provided by linear multigrid is also positive definite. The proof is
in the Appendix A.

Thanks to Theorem 4.2, we can now freely choose the number of
fine levels involved in residual recalculation. Fig. 7 compares three
choices of the residual update. It indicates that the optimal choice is
to recalculate the residual at an intermediate level in the last bigest
V-cycle, so that the nonlinearity and the interpolation/restriction
cost among resolution levels can be well balanced. Another choice
we have made is that we only use linear interpolation scheme in our
nonlinear FMG. In our experiments, we found high-order interpola-
tion schemes help little for the convergence of our nonlinear FMG.
The restriction and interpolation matrices must satisfy the Galerkin
condition to keep our nonlinear FMG stable and efficient. If the
restriction matrices are from high-order interpolation matrices, the
matrices Ah at coarse level would be very dense. This reduces the
performance of multigrid method.

4.2.3. Global convergence

As a line search method, our nonlinear FMG method must scale
each correction by a proper step length. Here we choose to use
backtracking line search. An interesting phenomenon we noticed
from our experiment is that the corrections calculated at coarser
levels tend to need smaller step lengths when only update the resid-
uals but not Hessian matrices. When increasing the frequency of
updating the Hessian matrices, the step length of each correction
increases to one. But updating Hessian matrices is very time con-
suming compared to updating residuals. So we only update Hessian
matrices only when FMG back to the finest level. This also inspires
us to use different initial step lengths at different levels. Doing so
reduces the computational cost spent on backtracking steps by ap-
proximately 10 percent.

4.3. Adaptive Smoother

Multigrid applies the smoothing operator, i.e., the stationary itera-
tive solver, to find a correction that reduces the residual. Therefore,
we can naturally develop an adaptive smoother to skip smoothing

(a) Without adaptive smoothing (b) With adaptive smoothing

Figure 8: The vertices visualized in their colors, without and with
adaptive smoothing. The desaturated vertices in (a) are those with
low residuals. Our adaptive smoother skips them from the smooth-
ing process.

where the residual has dropped below a certain threshold. This idea,
also explored in [OGRG07] has a unique advantage: the threshold
places an upper bound on the error caused by adaptive smoothing.

The adaptive smoother is highly compatible with multi-color sym-
metric Gauss-Seidel that we propose to use in Subsection 3.1. By
definition, the vertices in the same color are not adjacent accord-
ing to the connectivity of the system matrix. This means the cor-
responding equations are independently, so when we calculate the
residual magnitude at a vertex to determine if it needs a correction,
we do not need to worry about its residual being affected by cor-
rected vertices in the same color. Fig. 8 illustrates the mesh used in
the sphere example drawn in six different colors. The colorful ver-
tices are the ones being corrected, and the desaturated vertices are
the ones being skipped. In average, our adaptive smoother can re-
duce the computational time spent on smoothing by approximately
30 percent.

We note that the adaptive smoother does not need to specifically
arrange the vertices for GPU kernels and it can work efficiently as
it is. In fact, resorting the vertices would lower the system perfor-
mance because its computational overhead, so we do not recom-
mend it.

4.4. Nonlinear FMG for Projective Dynamics

Projective Dynamics is very efficient to simulate constraint based
soft bodies. The nonlinearity of constraints is handled in the local
step projection. In the global step, it solves a sparse linear system
with a constant matrix. This matrix can be prefractored at the ini-
tialization . Using only a few iterations, projective dynamics can
get an approximate solution which is very similar to that of New-
ton’s method. However, as the cloth resolution and stiffness in-
creasing and the time step becoming larger such as 33ms, the con-
vergence of projective dynamics reduces. Obvious artifacts appear
even using direct methods to solve the global step, as demonstrated
in [Wan15]. Using traditional linear multigrid method to solve the
global step also suffer the same issue.

[Wan15] proposed to solve the linear sparse system by parallel Ja-
cobi method and used a series of Chebyshev weights to accelerate
the convergence of projective dynamics. [FTP16] adapted parallel

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

-4

-3

-2

-1

0

0 20 40 60 80 100

FMG
Direct
Acclerated Gauss-Seidel
Our Method
Our Method+Chebyshev
Gauss-Seidel+Chebyshev

-4

-3

-2

-1

0

0 20 40 60 80 100

Direct
Gauss-Seidel+Chebyshev
Accelerated Gauss-Seidel
FMG
Our Method
Our Method+Chebyshev

10-3

10-2

10-1

100

10-4

0 20 40 60 80 100
Time (ms)

R
el

at
iv

e
E

rr
or

0 20 40 60 80 100
Time (ms)

10-3

10-2

10-1

100

10-4

R
el

at
iv

e
E

rr
or

Figure 9: Tablecloth example with a 10K vertices cloth simulated
by Projective Dynamics using a large time step ∆t = 1/30s. Though
our nonlinear FMG method with Chebyshev acceleration can con-
verge very fast, it is not the best choice when simulating relative
low-resolution cloth.

Gauss-Seidel method and achieved better convergence than Jaco-
bi method. Although iterative methods may not solve the linear
system exactly, they allow more frequently local step constraints
projection to handle the nonlinearity. Fig. 9 shows Gauss-Seidel
method can achieve very fast convergence when Chebyshev accel-
eration is applied between the local step and the global step. In
contrast, when using accelerated Gauss-Seidel method as a linear
solver for the global step, i.e. the Chebyshev acceleration is applied
inside the global step, the convergence slows down a lot. However,
the convergence of the Gauss-Seidel method with Chebyshev ac-
celeration drops very fast when simulating high-resolution cloth, as
illustrated in Fig. 10. This is because the global step requires more
accuracy when the linear system becomes larger as the resolution
of cloth increasing.

In our experiments, we observed that the local step and global step
must be balanced. On one hand, if more computational cost is spent
on global step, then nonlinearity cannot be handled well. This will
cause over-relaxation. On the other hand, if the global step can not
be solved to enough precision, it would also cause less-relaxation.
The cloth may be too loose in the area with hard constraints, such
as fixed points. Based on this observation, we find our nonlinear
FMG method can significantly speedup the convergence of projec-
tive dynamics because it provides a good strategy for balancing the
local step and global step.

It is very easy to integrate our nonlinear FMG method with pro-
jective dynamics. As describe in Sec. 4.2.2, when the residual e-
quations Ahxh = bh on multi-resolution coarse levels have been
solved or smoothed, we interpolate the corrections xh back to the
finest level x0 = x0 + I0

hxh and update the right hand residuals b0.
In projective dynamics, updating the right hand term b0 is actual-
ly doing a local step constraint projection. Chebyshev weights can
also be applied into our nonlinear FMG to speed-up the conver-
gence of projective dynamics. And the correcting process becomes
x(k+1)

0 = ω[(x(k)0 + I0
hxh)−x(k−1)

0]+x(k−1)
0 , in which x(k)0 is the cur-

rent solution at the finest level and ω is the Chebyshev weight. By
adjusting the smoothing iterations used on each level, the local step
constraint projection and the global step linear system smoothing
get to a balance point in our nonlinear FMG framework. Different

-4

-3

-2

-1

0

0 20 40 60 80 100

FMG
Direct
Acclerated Gauss-Seidel
Our Method
Our Method+Chebyshev
Gauss-Seidel+Chebyshev

-4

-3

-2

-1

0

0 20 40 60 80 100

Direct
Gauss-Seidel+Chebyshev
Accelerated Gauss-Seidel
FMG
Our Method
Our Method+Chebyshev

10-3

10-2

10-1

100

10-4

0 20 40 60 80 100
Time (ms)

R
el

at
iv

e
E

rr
or

0 20 40 60 80 100
Time (ms)

10-3

10-2

10-1

100

10-4

R
el

at
iv

e
E

rr
or

Figure 10: Tablecloth example with a 40K vertices cloth simulated
by Projective Dynamics using a large time step ∆t = 1/30s. Com-
pared to the low-resolution example in Fig. 9, multigrd methods
have obvious advantages over the other three methods when simu-
lating a relative high-resolution cloth. Our nonlinear FMG method
and its counterpart with Chebyshev acceleration achieve the best
convergences.

from the Newton’s method, we do not do line search in projective
dynamics when doing corrections to the solution at the finest lev-
el. Even though the energy of the optimization problem Eq. 2 may
increase, the local step projection can ensure the stability of projec-
tive dynamics. This allows our nonlinear FMG method to be very
efficient in projective dynamics.

4.5. Collisions and Contacts

While our research is focused on dynamic simulation, not colli-
sion handling, the mesh hierarchy we built for multigrid can be
used to facilitate the handling of cloth self collisions as well. To do
so, we simply downsample the mesh from fine to coarse, and then
handle self collisions from coarse to fine. In our examples, we use
our in-house discrete collision handling system based on intersec-
tion contour minimization [VMT06]. We note that our self collision
treatment is far from being optimal and we would love to explore
the relationship between multigrid and multi-resolution collision
handling even further.

To handle cloth collisions with rigid bodies, we use a signed dis-
tance field for fast detection, and both projection and penalty force
for removing collisions. The penalty force can be naturally integrat-
ed into the nonlinear system solving process. To achieve frictional
effects, we simply apply velocity filtering on each vertex. One nice
property of our nonlinear FMG method is that we always return to
the finest level for updating x after each nonlinear smoothing pro-
cess. This allows collision projection to be injected into the solver
for quick response. In contrast, standard multigrid methods handle
collisions only at the beginning or the end of each V-cycle, which
cause the coarse levels to be ineffective due to their ignorance of
collisions.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

(a) GS+Chebyshev (b) Ours (c) Ours+Chebyshev

(d) GS+Chebyshev (e) Ours (f) Ours+Chebyshev

Figure 11: Tablecloth examples simulated by Projective Dynamics
using a large time step ∆t = 1/30s and the same real-time budgets.
Cloth in the first row have 10k vertices. Cloth in the second row
have 40k vertices.

5. Results

(Please watch the supplemental video for animation examples.) In
the implementation of our method, we use the Intel MKL PAR-
DISO library for CPU computation and the CUDA library for G-
PU computation. Our experiment runs on an Intel Core i7-5930K
3.5GHz processor and an NVIDIA GeForce GTX 1080 graphics
card. We typically use ∆t = 1/180 to 1/30s as our time step, and t-
wo to three FMG cycles per time step, which is sufficient for the rel-
ative residual to be less than one percent of the initial residual. Our
multigrid typically uses three to four symmetric Gauss-Seidel itera-
tions in every smoothing process. Table 1 summarizes the statistics
and the timings of our examples. The two bottlenecks in our sim-
ulator are the symmetric Gauss-Seidel smoother, which consumes
nearly 50 percent of the computational cost, and the restriction op-
eration applied to the matrix (not in projective dynamics), which
consumes about 30 percent of the computational cost. When do
coloring for matrice on different resolution levels, the number of
the colors varies from level to level, since the matrix sparsity is un-
der the influence of the interpolator. In our experiment, this number
can be as high as 14 at the coarsest level. For a sparse matrix, it-
s CSR format is the same as the CSC format of its transpose. We
take advantage of this property to accelerate the computation of
Ih

h+1
T AhIh+1

h , which is about 4 times faster than the sparse matrix
multiplication operation in CuSparse.

Dressed character examples Fig. 12 reveals the ability of our sim-
ulator in animating a gown mesh and a secretary dress mesh, worn
by a virtual walking mannequin. In these examples, the garments
are modeled from commercial sewing patterns, so they fit the virtu-
al body well and they do not demonstrate excessive wrinkles. But

Name #Vert #Tri #Color Cost/Cycle Cost/Step
Sphere 120K 238K 6 to 13 100ms 200ms
Funnel 120K 238K 6 to 13 100ms 200ms
Dress 132K 264K 5 to 14 111ms 333ms
Gown 104K 208K 5 to 12 84ms 252ms

Curtain 40K 80K 5 to 11 33ms 33ms

Table 1: Statistics and timings of our examples. Here the timings
do not include the computational time spent on collision handling.

(a) A gown example with 104K ver-
tices

(b) A dress example with 132K ver-
tices

Figure 12: Garment examples. These examples demonstrate the a-
bility of our simulator in animating virtual garments dressed on a
walking character.

our simulator is fully capable of simulating complex garments de-
signed with fine shirring wrinkles as well, as long as collision han-
dling is not an issue.

An interactive curtain demo While our simulator can be used
to efficiently simulate high-resolution cloth meshes, it can also be
used to simulate meshes in relatively lower resolutions at a real time
or interactive rate. For example, Fig. 13 shows that the simulator
can handle the simulation of a rectangular mesh with 40K vertices
at 31 FPS. Such examples would be too expensive to handle by
previous single-resolution simulators on the GPU [FTP16,WY16],
without overly stretching artifacts.

Figure 13: The curtain example. Our nonlinear FMG simulator is
able to handle this example with 40K vertices and 80K triangles in
real time.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

(a) A cloth mesh with 80K vertices (b) A cloth mesh with 120K vertices

(c) A cloth mesh with 160K vertices (d) A cloth mesh with 200K vertices

0

50

100

150

200

0 50 100 150 200

0

200

400

600

0 50 100 150 2000 50K 200K
Number of Vertices

100K 150K

600

400

200

0

T
im

e
(m

s)

0 50K 200K
Number of Vertices

100K 150K

200

150

100

50

0

T
im

e
(m

s)

(e) The relationship between the mesh resolution and the cost per time step

Figure 14: The sphere example. In this example, we test the scal-
ability of our method, by dropping the same cloth model in four
different resolutions onto a rotating sphere. Our method exhibits
nearly linear scalability.

Scalability to the mesh resolution In this experiment, we would
like to evaluate the scalability of our method to different mesh reso-
lutions. Fig 14a to 14d are four animation results, in which the same
tablecloth in four mesh resolutions fall onto a unit sphere. Fig 14e
shows that their computational costs per time step are nearly linear
to the numbers of vertices, when using the same relative residual
threshold as the convergence condition. We note that the simula-
tor runs an integral number of FMG cycles. When the demand on
FMG cycles increases as the mesh resolution grows, the compu-
tational cost will experience a sudden jump, which is not demon-
strated in Fig 14e. This is why we typically use a fixed number of
FMG cycles, rather than the residual threshold, as the convergence
condition in our experiment.

5.1. Limitations

As geometric multigrid, our method needs to construct the mesh
hierarchy ahead of time, which demands extra implementation ef-
fort. The mesh hierarchy construction process implicitly assumes
that mesh vertices are uniformly distributed, which may not always
be the case. Fundamentally as a line search method, our nonlinear

FMG method has been proven to be convergent for a limited num-
ber of smoothers. The adaptive smoother is not optimal and we
believe it still has space for further improvement. Finally, while the
multi-resolution structure of our method naturally enables multi-
resolution collision handling, it has not fully explored the strength
of this idea. As a result, the performance gain provided by multi-
resolution simulation diminishes in complex collision cases, when
most computational cost is spent on collision handling.

6. Conclusions and Future Work

In this paper, we present a nonlinear, adaptive, geometric multigrid
method for cloth simulation on the GPU. As our first step toward
fast simulation with low resolution dependency, it has demonstrat-
ed its efficiency and robustness in handling high-resolution meshes
and large time steps. Our experiment confirms that geometric multi-
grid is compatible with geometrically adaptive techniques. In par-
ticular, high curvature regions, i.e., wrinkles, are the places where
larger residuals occur and more computational costs are needed.

Looking into the future, we plan to study other smoother option-
s and better ways of achieving geometric adaptivity. We will then
explore the combination of our method with multi-resolution col-
lision handling techniques for fast simulation of complex collision
cases. We are also interesting in knowing how multigrid can be ap-
plied to accelerate the simulation of unstructured volumetric mesh-
es. Finally, we will investigate the use of multigrid in simulation-
related problems, including space-time optimization and inverse e-
lastic shape design.

Acknowledgement

This research is supported by China Scholarship Council. The
project is partially funded by NSF grant IIS-1524992. We al-
so would like to thank Adobe and NVIDIA for their funding
and equipment support. Min Tang is supported in part by NSFC
(61732015, 61572423).

References

[AKS05] AKSOYLU B., KHODAKOVSKY A., SCHRÖDER P.: Multilevel
solvers for unstructured surface meshes. SIAM J. Sci. Comput. 26, 4
(Apr. 2005), 1146–1165. 3

[BD12] BENDER J., DEUL C.: Efficient Cloth Simulation Using an
Adaptive Finite Element Method. In Workshop on Virtual Reality Inter-
action and Physical Simulation (2012), The Eurographics Association,
pp. 21–30. 2

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust treatment of
collisions, contact and friction for cloth animation. ACM Trans. Graph.
(SIGGRAPH) 21, 3 (July 2002), 594–603. 2

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simulation of clothing
with folds and wrinkles. In Proceedings of SCA (2003), pp. 28–36. 2

[BML∗14] BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.:
Projective dynamics: Fusing constraint projections for fast simulation.
ACM Trans. Graph. (SIGGRAPH) 33, 4 (July 2014), 154:1–154:11. 2, 4

[Bra77] BRANDT A.: Multi-level adaptive solutions to boundary-value
problems. Mathematics of Computation 31, 138 (1977), 333–390. 3

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simulation. In
Proceedings of the 25th annual conference on Computer graphics and

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

interactive techniques (New York, NY, USA, 1998), SIGGRAPH ’98,
ACM, pp. 43–54. 2

[CFW13] CHEN Z., FENG R., WANG H.: Modeling friction and air ef-
fects between cloth and deformable bodies. ACM Trans. Graph. (SIG-
GRAPH) 32, 4 (July 2013), 88:1–88:8. 2

[CK02] CHOI K.-J., KO H.-S.: Stable but responsive cloth. ACM Trans.
Graph. (SIGGRAPH) 21, 3 (July 2002), 604–611. 2, 5

[CLMMO14] CIRIO G., LOPEZ-MORENO J., MIRAUT D., OTADUY
M. A.: Yarn-level simulation of woven cloth. ACM Trans. Graph. (SIG-
GRAPH Asia) 33, 6 (Nov. 2014), 207:1–207:11. 2

[CWSO13] CLAUSEN P., WICKE M., SHEWCHUK J. R., O’BRIEN
J. F.: Simulating liquids and solid-liquid interactions with lagrangian
meshes. ACM Trans. Graph. 32, 2 (Apr. 2013), 17:1–15. 2

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR A. H.:
Dynamic real-time deformations using space & time adaptive sampling.
In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques (2001), SIGGRAPH ’01, pp. 31–36. 2

[FTP16] FRATARCANGELI M., TIBALDO V., PELLACINI F.: Vivace:
A practical Gauss-Seidel method for stable soft body dynamics. ACM
Trans. Graph. (SIGGRAPH Asia) 35, 6 (Nov. 2016), 214:1–214:9. 2, 3,
6, 8

[GTS02] GREEN S., TURKIYYAH G., STORTI D.: Subdivision-based
multilevel methods for large scale engineering simulation of thin shells.
In Proceedings of SMA (2002), pp. 265–272. 3

[GVL96] GOLUB G. H., VAN LOAN C. F.: Matrix computations (3rd
Ed.). Johns Hopkins University Press, Baltimore, MD, USA, 1996. 5

[GW06] GEORGII J., WESTERMANN R.: A multigrid framework for
real-time simulation of deformable bodies. Comput. Graph. 30, 3 (June
2006), 408–415. 3

[JCK∗13] JEON I., CHOI K.-J., KIM T.-Y., CHOI B.-O., KO H.-S.:
Constrainable multigrid for cloth. Computer Graphics Forum (Pacific
Graphics) 32, 7 (2013), 31–39. 3

[KJM10] KALDOR J. M., JAMES D. L., MARSCHNER S.: Efficient
yarn-based cloth with adaptive contact linearization. ACM Trans. Graph.
(SIGGRAPH) 29, 4 (July 2010), 105:1–105:10. 2

[LBOK13] LIU T., BARGTEIL A. W., O’BRIEN J. F., KAVAN L.: Fast
simulation of mass-spring systems. ACM Trans. Graph. (SIGGRAPH
Asia) 32, 6 (Nov. 2013), 214:1–214:7. 2, 4

[LV05] LI L., VOLKOV V.: Cloth animation with adaptively refined
meshes. In Proceedings of the Twenty-eighth Australasian Conference
on Computer Science - Volume 38 (2005), pp. 107–113. 2

[Mül08] MÜLLER M.: Hierarchical position based dynamics. In Pro-
ceedings of VRIPHYS (2008), pp. 1–10. 3

[MBT∗12] MIGUEL E., BRADLEY D., THOMASZEWSKI B., BICKEL
B., MATUSIK W., OTADUY M. A., MARSCHNER S.: Data-driven esti-
mation of cloth simulation models. Comput. Graph. Forum (Eurograph-
ics) 31, 2 (May 2012), 519–528. 2

[MTB∗13] MIGUEL E., TAMSTORF R., BRADLEY D., SCHVARTZMAN
S. C., THOMASZEWSKI B., BICKEL B., MATUSIK W., MARSCHNER
S., OTADUY M. A.: Modeling and estimation of internal friction in
cloth. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6 (Nov. 2013), 212:1–
212:10. 2

[MWN∗17] MANTEAUX P.-L., WOJTAN C., NARAIN R., REDON S.,
FAURE F., CANI M.-P.: Adaptive physically based models in computer
graphics. Computer Graphics Forum 36, 6 (2017), 312–337. 2

[NOB16] NARAIN R., OVERBY M., BROWN G. E.: ADMM ⊇ projec-
tive dynamics: Fast simulation of general constitutive models. In Pro-
ceedings of SCA (2016), pp. 21–28. 2

[NSO12] NARAIN R., SAMII A., O’BRIEN J. F.: Adaptive anisotropic
remeshing for cloth simulation. ACM Trans. Graph. (SIGGRAPH Asia)
31, 6 (Nov. 2012), 152:1–152:10. 2

[OGRG07] OTADUY M. A., GERMANN D., REDON S., GROSS M.:
Adaptive deformations with fast tight bounds. In Proceedings of SCA
(2007), pp. 181–190. 3, 4, 6

[ONW08] OH S., NOH J., WOHN K.: A physically faithful multigrid
method for fast cloth simulation. Computer Animation and Virtual
Worlds 19, 3 (2008). 3

[SLD09] SIMNETT T. J. R., LAYCOCK S. D., DAY A. M.: An Edge-
based Approach to Adaptively Refining a Mesh for Cloth Deformation.
In Theory and Practice of Computer Graphics (2009), The Eurographics
Association, pp. 77–84. 2

[TJM15] TAMSTORF R., JONES T., MCCORMICK S. F.: Smoothed
aggregation multigrid for cloth simulation. ACM Trans. Graph. (SIG-
GRAPH Asia) 34, 6 (Oct. 2015), 245:1–245:13. 2, 4

[TSIF05] TERAN J., SIFAKIS E., IRVING G., FEDKIW R.: Robust qua-
sistatic finite elements and flesh simulation. In Proceedings of SCA
(2005), pp. 181–190. 5

[TWT∗16] TANG M., WANG H., TANG L., TONG R., MANOCHA D.:
CAMA: Contact-aware matrix assembly with unified collision handling
for GPU-based cloth simulation. Computer Graphics Forum (Euro-
graphics) 35, 2 (2016), 511–521. 2

[VMT06] VOLINO P., MAGNENAT-THALMANN N.: Resolving sur-
face collisions through intersection contour minimization. ACM Trans.
Graph. (SIGGRAPH) 25, 3 (July 2006), 1154–1159. 7

[VMTF09] VOLINO P., MAGNENAT-THALMANN N., FAURE F.: A sim-
ple approach to nonlinear tensile stiffness for accurate cloth simulation.
ACM Trans. Graph. 28, 4 (Sept. 2009), 105:1–105:16. 2

[Wan15] WANG H.: A Chebyshev semi-iterative approach for accelerat-
ing projective and position-based dynamics. ACM Trans. Graph. (SIG-
GRAPH Asia) 34, 6 (Oct. 2015), 246:1–246:9. 2, 4, 6

[WDGT01] WU X., DOWNES M. S., GOKTEKIN T., TENDICK F.:
Adaptive nonlinear finite elements for deformable body simulation using
dynamic progressive meshes. Computer Graphics Forum (Eurographics)
20, 3 (2001), 349–ĺC358. 2

[WOR10] WANG H., O’BRIEN J., RAMAMOORTHI R.: Multi-resolution
isotropic strain limiting. ACM Trans. Graph. (SIGGRAPH Asia) 29, 6
(Dec. 2010), 156:1–156:10. 3

[WOR11] WANG H., O’BRIEN J. F., RAMAMOORTHI R.: Data-driven
elastic models for cloth: Modeling and measurement. ACM Trans.
Graph. (SIGGRAPH) 30, 4 (July 2011), 71:1–71:12. 2

[WRK∗10] WICKE M., RITCHIE D., KLINGNER B. M., BURKE S.,
SHEWCHUK J. R., O’BRIEN J. F.: Dynamic local remeshing for e-
lastoplastic simulation. ACM Trans. Graph. 29 (July 2010), 49:1–49:11.
2

[WTTM15] WANG Z., TANG M., TONG R., MANOCHA D.: Tightc-
cd: Efficient and robust continuous collision detection using tight error
bounds. Comput. Graph. Forum 34, 7 (Oct. 2015), 289–298. 2

[WY16] WANG H., YANG Y.: Descent methods for elastic body simu-
lation on the GPU. ACM Trans. Graph. (SIGGRAPH Asia) 35, 6 (Nov.
2016), 212:1–212:10. 2, 4, 8

[ZSTB10] ZHU Y., SIFAKIS E., TERAN J., BRANDT A.: An efficien-
t multigrid method for the simulation of high-resolution elastic solids.
ACM Trans. Graph. 29, 2 (Apr. 2010), 16:1–16:18. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Zhendong Wang et al. / Parallel Multigrid for Nonlinear Cloth Simulation

Appendix A

THEOREM 4.1. Let Ax = b be a linear system and A be positive
definite. If x(0) = 0 and x(K) = Ã−1b is the result after K symmetric
Gauss-Seidel iterations, then Ã−1 must be positive definite. If
y(K) = Ã−1b is the result after K symmetric Gauss-Seidel itera-
tions with Chebyshev acceleration, then Ã−1 must be also positive
definite.

PROOF. Let A = D + L + LT, where D is the diagonal part
and L is the lower triangular part. By definition of symmetric
Gauss-Seidel iteration, we know:

x(k+1) = x(k)+M−1
(

b−Ax(k)
)

= M−1b+M−1(M−A)x(k)

= M−1b+M−1LD−1LTx(k).
(4)

in which M = (D+L)D−1 (D+L)T. From Equation 4, we get:

Ã−1 =
K−1

∑
k=0

(
M−1LD−1LT

)k
M−1. (5)

Each term in Ã−1 is positive definite. Therefore, Ã−1 must also be
positive definite.

By the definition of a stationary linear solver, we know the result
of symmetric Gauss-Seidel satisfies:

x(j) = x∗+G j(x(0) −x∗) = (I−G j)A−1b, (6)

in which G is the iteration matrix of symmetric Gauss-Seidel and
x∗ = A−1b is the exact solution. By the definition of the Chebyshev
semi-iterative method, we have:

y(K) =
K
∑

j=0
v j(K)

(
x∗+G j(x(0) −x∗)

)
=

K
∑

j=0
v j(K)(I−G j)A−1b,

(7)

in which v j(K) is a set of coefficients calculated from Chebyshev
polynomials, satisfying ∑

K
j=0 v j(K) = 1. Since (I−G j)A−1 is the

smoothing matrix of symmetric Gauss-Seidel and it is positive def-
inite, the joint smoothing matrix given in Equation 7 must be posi-
tive definite as well. �

THEOREM 4.2. Suppose that the linear system is positive definite.
If the matrices representing the pre-smoothing process and the
post-smoothing process at the same level are identical and positive
definite, then the matrix representing the whole smoothing process
provided by linear multigrid is also positive definite.

PROOF. We prove this by induction. Let B−1 be the matrix
representing pre-smoothing and post-smoothing at the h-th level,
and C−1

h+1 be the matrix representing the smoothing process below
the h-th level. After pre-smoothing, we get:

x(1)h = x(0)h +B−1r(0)h , (8)

in which x(0)h is the initial solution and r(0)h = b−Ahx(0)h is the initial
residual at the h-th level. After smoothing below the h-th level, we

obtain:

x(2)h = x(1)h +C−1
h+1

(
b−Ahx(1)h

)
= x(0)h +

(
B−1 +C−1

h+1(B−Ah)B−1)r(0)h .
(9)

Finally after post-smoothing, we obtain:

x(3)h = x(2)h +B−1
(

b−Ahx(2)h

)
= x(0)h +C−1

h r(0)h , (10)

in which C−1
h = B−1 +B−1(B−Ah)

(
B−1 +C−1

h+1(B−Ah)B−1). S-
ince B and Ah are positive definite, if C−1

h+1 is positive definite, C−1
h

must be positive definite as well. Meanwhile, we know C−1
H = A−1

H
at the coarsest level, which is positive definite by its definition.
Therefore, the statement is true. �

Appendix B: Mesh Hierarchy Generating

We generate the mesh hierarchy from fine to coarse in the 2D ma-
terial space at initialization. As shown in the following figures, we
take four steps to cosrsen a fine cloth mesh stitched by multiple
patches (a):

1 (b): Choose all the critical corner vertices to keep the shape of
boundary;

2 (c): Uniformly choose boundary vertices to coarsen the bound-
aries. If two vertices on different boundaries are stitched, they
should be chosen together.

3 (d): Uniformly choose some inner vertices to coarsen each patch.

4 (e): Trianglulation with boundary constraints.

(a) (b) Choose Corner Vertices

(c) Choose Boundary Vertices (d) Choose Inner Vertices

(e) Triangulation

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

