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Abstract

We present fast algorithms to perform accurate CCD queries be-
tween triangulated models. Our formulation uses properties of the
Bernstein basis and Bézier curves and reduces the problem to evalu-
ating signs of polynomials. We present a geometrically exact CCD
algorithm based on the exact geometric computation paradigm to
perform reliable Boolean collision queries. Our algorithm is more
than an order of magnitude faster than prior exact algorithms. We
evaluate its performance for cloth and FEM simulations on CPUs
and GPUs, and highlight the benefits.
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1 Introduction

The problem of fast and reliable collision detection arises in
physically-based simulation, geometric computing, and robotics.
Many applications require accurate algorithms that do not miss
a single collision and maintain intersection-free meshes through-
out the simulation. Some of the widely-used algorithms for con-
tact computation are based on continuous collision detection (C-
CD). Given two discrete instances or configurations of rigid or de-
formable models, CCD algorithms model the motion of each ob-
ject or a mesh element using a continuous trajectory between the
configurations and check for collisions along the trajectory. These
algorithms are widely used for cloth simulation [Provot 1997; Brid-
son et al. 2002; Harmon et al. 2008; Brochu et al. 2012], rigid-body
simulation [Redon et al. 2002], hair simulation [Selle et al. 2008],
FEM simulation [Tang et al. 2011], robot motion planning [LaValle
2006; Tang et al. 2010a], dynamic solvers [Stam 2009], etc.

The simplest algorithms for triangular meshes linearly interpolate
the trajectories of the vertices. In this case, contact computation
reduces to performing a series of elementary tests between the ver-
tices, edges, and faces using cubic polynomial root solvers [Provot
1997; Bridson et al. 2002]. Many high-level culling techniques
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Figure 1: Benefits of Reliable CCD Queries: We highlight the
benefits of our exact CCD algorithm on cloth simulation. Our algo-
rithm can be used to generate a plausible simulation (a). If param-
eters are not properly tuned, floating-point-based CCD algorithms
(b) can result in penetrations and artifacts.

have also been proposed to reduce the number of elementary tests
performed between the meshes of complex models.

The elementary tests are typically implemented using finite-
precision or floating-point arithmetic and use error tolerances. The
numerical errors in arithmetic operations along with the tolerances
can impact these elementary tests’ accuracy (Fig. 1). There are t-
wo types of problems: false negatives, when the CCD algorithm
may miss a collision; and false positives, when the CCD algorithm,
acting conservatively, flags a non-colliding configuration as a col-
lision. In order to overcome these problems, Brochu et al. [2012]
proposed algorithms for exact CCD computation that can perform
reliable collision queries. However, their approach can be relatively
expensive due to use of large number of exact arithmetic operations.
Moreover, its portability may be limited as efficient implementa-
tions of exact computation libraries are not easily available on all
processors (e.g. GPUs).

Main Results: We present fast and accurate algorithms to perform
reliable CCD queries. Our approach is based on using coplanari-
ty and inside tests and reduces the computation to finding roots of
algebraic equations and inequalities (i.e. a semi-algebraic set). We
represent these functions using the Bernstein basis and exploit ge-
ometric properties of Bézier curves to design an efficient and re-
liable Bernstein sign classification (BSC) approach for CCD. The
overall collision query is reduced to performing a series of sign e-
valuations of algebraic expressions and involves simple arithmetic
operations. We also present a conservative elementary culling al-
gorithm to improve the algorithm’s performance. We use BSC to
design two algorithms:

1. BSC-exact: This is an exact algorithm to perform CCD queries
based on the exact geometric computation paradigm [Yap 2004]
and is not susceptible to false positives or false negatives. We use
extended precision arithmetic operations and accelerate the perfor-
mance using floating-point filters. As compared to prior exact CCD
algorithm [Brochu et al. 2012], we observe 10− 25X speedup on a
single CPU core.
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http://doi.acm.org/10.1145/2661229.2661237
http://portal.acm.org/ft_gateway.cfm?id=2661237&type=pdf
http://gamma.cs.unc.edu/BSC/


2. BSC-float: This is a finite-precision variant and is implement-
ed using floating-point arithmetic operations. We have evaluat-
ed its performance on CPUs and GPUs and observe considerable
speedups over prior floating-point CCD algorithms. Furthermore,
we observe significant improvement in accuracy, i.e. significant re-
duction in the number of false positives and false negatives using
our algorithm.

The overall algorithms are simple to implement, using only ad-
dition, subtraction, and multiplication operations. The use of the
Bernstein basis and simple arithmetic operations results in reduced
errors and improved efficiency. We highlight the benefits of algo-
rithms using cloth and FEM simulation benchmarks.

2 Related Work

In this section, we give a brief overview of prior work on CCD
algorithms, high-level collision culling, and the computation of the
roots of polynomials.

Many techniques have been proposed for CCD between rigid mod-
els [Redon et al. 2002; Kim and Rossignac 2003], articulated mod-
els [Zhang et al. 2007], and deformable models [Volino and Thal-
mann 1994; Govindaraju et al. 2005; Hutter and Fuhrmann 2007;
Tang et al. 2011]. At the lowest level, these algorithms perform ele-
mentary tests between triangle pairs. The elementary tests are typi-
cally performed by computing roots of cubic polynomials. Other C-
CD algorithms are based on conservative local advancement [Tang
et al. 2009b]. All these methods are prone to floating-point errors
and numerical tolerances. Therefore, they can result in false nega-
tives and false positives. Wang [2014] has performed forward error
analysis for elementary tests and used that analysis to derive tight
error bounds for floating-point computation. This is used to reduce
the number of false positive. In contrast, our BSC-exact algorith-
m and the approach described in [Brochu et al. 2012] are reliable.
The tight error bounds in [Wang 2014] can be used to derive tighter
error bounds for BSC-float.

High-level Culling: Many high-level techniques have been pro-
posed to accelerate CCD computations by reducing the number of
elementary tests between the triangle pairs, such as removing re-
dundant elementary tests [Curtis et al. 2008; Tang et al. 2009a;
Wong and Baciu 2006]. The simplest culling algorithms use BVHs
(bounding volume hierarchies) based on k-DOPs or AABBs. Other
methods use bounds on surface normals and curvature [Volino and
Thalmann 1994; Provot 1997; Mezger et al. 2003] or perform self-
collision culling [Schvartzman et al. 2010; Pabst et al. 2010; Zheng
and James 2012]. Many of these algorithms are implemented us-
ing floating-point arithmetic operations and are prone to numerical
errors.

Polynomial Root Evaluation: Many numerical iterative method-
s have been proposed to compute roots of polynomial equation-
s. They tend to use tolerances and can result in false positives or
false negatives for CCD computations. In computer graphics and
geometric modeling, polynomials are represented using the spline
basis, and their roots can be computed using the geometric subdi-
vision methods, such as de Casteljau’s algorithm [Farin 2002] or
Bézier clipping [Sederberg and Nishita 1990]. These subdivision
methods are implemented using finite-precision arithmetic and are
also prone to roundoff errors. There is extensive literature in sym-
bolic computation and computational geometry on reliably com-
puting the roots of polynomials using exact arithmetic [Yap 2004;
Mourrain et al. 2005].

3 CCD and Algebraic Formulation

In this section, we formulate CCD queries in terms of algebraic
equations and inequalities. We assume that the vertices of the mesh
move with a constant velocity during the time interval and that the
CCD query reduces to performing two types of Boolean queries
or elementary tests [Provot 1997; Bridson et al. 2002; Brochu et al.
2012]. These include the VF query, which checks whether a moving
vertex intersects with a moving triangle, and the EE query, which
checks whether a moving edge intersects with another moving edge.
All these queries assume that the time interval is t ∈ [0, 1] and that
the initial configuration at t = 0 is intersection-free. If the Boolean
query returns a positive answer, we can use techniques based on
interval arithmetic to compute the intersection points or first time
of contact to a desired precision. In many applications, only the
parity of the number of collisions is needed for robust simulation
[Brochu et al. 2012]. As a result, we focus on reliably computing a
yes/no answer to the Boolean queries. The exact root and the first
time of contact can be computed using root isolation and interval
arithmetic techniques.

We first introduce the notations used in the rest of the paper. Next,
we present some properties of Bernstein basis functions and Bézier
curves that are used by our CCD algorithm.

3.1 Notations

We use following notations in the rest of the paper: Lower case let-
ters in normal fonts (e.g. a, b, ai,) represent scalar variables. Up-
per case letters (e.g., L, J(t))) represent scalar functions. Lower
case letters in bold face fonts (e.g. a, bt) represent vector quanti-
ties. Upper case letters in bold face fonts (e.g., L, J(t)) represent
vector-valued functions. F ′(t) and F ′′(t) are the 1st and 2nd order
of derivatives of a scalar function F (t), respectively. The operators
‘∗’, ‘·’, and ‘×’ denote the usual scalar multiplication, dot product,
and cross product, respectively. Operator Sign() returns the sign
of a scalar variable. All the proofs of the lemmas, theorems and
corollaries are in the supplementary material.

3.2 Bézier Curves and Bernstein Basis

We use the symbol Bn
i (t) to represent the ith basis function of the

Bernstein polynomials of degree n, i.e. Bn
i (t) = n!

i!(n−i)!
(1 −

t)n−iti, where t ∈ [0, 1] and 0 ≤ i ≤ n. The Bernstein polynomi-
al basis is widely used in geometric modeling for curve and surface
representation as well as in numerical analysis and computer alge-
bra for root computations [Mourrain et al. 2005]. It is well-known
that the polynomials expressed in the Bernstein basis have better
numerical stability under perturbation of their coefficients than do
those in the power basis [Farouki and Rajan 1987]. As a result, we
represent the semi-algebraic set used for CCD queries in Bernstein
basis.

Given a cubic polynomial Y (t), it can be expressed using the Bern-
stein basis, i.e.

Y (t) = k0 ∗B3
0(t) + k1 ∗B3

1(t) + k2 ∗B3
2(t) + k3 ∗B3

3(t). (1)

It corresponds to a cubic Bézier curve F(t) in a plane, where:

F(t) =

(
t

Y (t)

)
=

(
0
k0

)
∗B3

0(t) +

(
1/3
k1

)
∗B3

1(t)

+

(
2/3
k2

)
∗B3

2(t) +

(
1
k3

)
∗B3

3(t). (2)

We exploit some geometric properties of cubic Bézier curves in
order to characterize inflection points and extreme points. An in-
flection point occurs where the curvature vanishes or changes its



1.00

)(tY

1/3 2/3

1.0
0 1/3 2/3

(c)

(b)

1.00 1/3 2/3

(a)

Has an 
inflection 

point?

Yes

No Has an 
extreme 
point?

Yes

No

0k

1k

2k

3k

0k

0k

1k

1k

2k

2k
3k

3k

)(tX

)(tX

)(tX

)(tY

)(tY

Figure 2: Bézier Classifications: We classify the cubic Bézier
curve into three categories (a)-(c), depending on whether it has an
inflection point or an extreme point.

bending direction. The extreme points correspond to local minima
or maxima. Every cubic Bézier curve can be classified into three
categories (as shown in Fig. 2), depending on whether it has any
inflection point or extreme point over its domain (t ∈ [0, 1]) [Farin
2002]:

• Case (a): The curve has an inflection point.

• Case (b): The curve has no inflection point, but an extreme
point.

• Case (c): The curve has neither an inflection point nor an
extreme point.

The existence of an inflection point or an extreme point can be
checked based on the lemmas in the supplementary material.

A cubic Bernstein polynomial can be decomposed into lower-
degree polynomials based on the following theorem:

Polynomial Decomposition Theorem: Let G(t) and H(t) be a
cubic polynomial and a quadratic polynomial, respectively:

G(t) = i0 ∗B3
0(t) + i1 ∗B3

1(t) + i2 ∗B3
2(t) + i3 ∗B3

3(t),

H(t) = j0 ∗B2
0(t) + j1 ∗B2

1(t) + j2 ∗B2
2(t). (3)

G(t) can be decomposed as:

G(t) = L(t) ∗H(t) +K(t), (4)

where L(t) and K(t) are two linear polynomials:

L(t) = u0 ∗B1
0(t) + u1 ∗B1

1(t),

K(t) = v0 ∗B1
0(t) + v1 ∗B1

1(t), (5)

where u[0,1] and v[0,1] can be calculated from i[0...3] and j[0...2].

3.3 CCD Queries

The CCD test between a triangle pair reduces to performing 6 VF
queries and 9 EE queries. Each of these queries can be further
decomposed into two parts [Provot 1997; Bridson et al. 2002]:

• Coplanarity test: The VF and EE queries involve the use of
four deforming vertices. In order for a collision to occur, it is
necessary that those four vertices be coplanar.

• Inside test: In addition to satisfy the coplanarity condition,
we need to check whether the moving vertex is inside the tri-
angle (VF), or the two edges intersect with each other at an
interior point (EE).

The coplanarity test for a VF pair can be expressed as:

(pt − at) · nt = 0, (6)

where pt corresponds to the moving vertex, at,bt, ct are the ver-
tices of the deforming triangle, and nt is the normal vector of the
triangle (i.e. nt = (bt − at)× (ct − at)).

In order to perform an inside test for a VF pair, we need to perform
three one-sided tests, i.e. pt needs to be inside the triangle. This
can be expressed based on the following inequalities:

((bt − pt)× (ct − pt)) · nt ≥ 0, (7)
((ct − pt)× (at − pt)) · nt ≥ 0, (8)
((at − pt)× (bt − pt)) · nt ≥ 0. (9)

The coplanarity and inside tests can be combined to find a common
root of the following system of algebraic equation and inequali-
ties (i.e. a semi-algebraic set). The VF query reduces to checking
whether this semi-algebraic set has a real solution for t ∈ [0, 1].

(pt − at) · nt = 0,

((bt − pt)× (ct − pt)) · nt ≥ 0,

((ct − pt)× (at − pt)) · nt ≥ 0,

((at − pt)× (bt − pt)) · nt ≥ 0.

(10)

3.4 Coplanarity Tests using Bernstein Polynomials

In order to check the coplanarity of a vertex pt and a triangle (de-
fined by at, bt, and ct), we need to calculate the projected distance
between them along the direction of nt. If this distance becomes
zero at any time in the interval, the four vertices are classified as
coplanar based on following theorem.

Coplanarity Test Theorem for a VF Pair: For a deforming trian-
gle, whose initial and final positions are given as (a0, b0, c0) and
(a1, b1, c1) and a vertex with initial and final positions as p0 and
p1, the coplanarity test can be formulated in terms of the following
equation:

Y (t) = (pt − at) · nt = 0

= k0 ∗B3
0(t) + k1 ∗B3

1(t) + k2 ∗B3
2(t) + k3 ∗B3

3(t), (11)

where k[0..3] are scalars can be calculated from (a0,b0, c0, p0)
and (a1, b1, c1, p1).

The coplanarity test reduces to checking whether the 2D cubic
Bézier curve F(t) (Equation (2)) defined in the (X,Y ) plane in-
tersects with the X-axis.

3.5 Inside Tests using Bernstein Polynomials

We can also formulate the inside tests using Bernstein polynomials.

Inside Test Theorem for a VF Pair: Given the triangle and the
vertex defined by start and end positions over the interval [0, 1], the
inside test can be formulated in terms of the following inequality:

((bt − pt)× (ct − pt)) · nt = l0 ∗B4
0(t) + l1 ∗B4

1(t)

+l2 ∗B4
2(t) + l3 ∗B4

3(t) + l4 ∗B4
4(t) ≥ 0, (12)

where l[0..4] are scalars that can be calculated from (a0,b0, c0,
p0) and (a1, b1, c1, p1).



Simplified Inside Test Theorem for a VF pair: Based on combin-
ing Inequality (12) with Equation (11) and algebraic elimination,
this inside test can be reduced to the following degree-two formula-
tion:

P (t) = p0 ∗B2
0(t) + p1 ∗B2

1(t) + p2 ∗B2
2(t) ≥ 0, (13)

where p[0...2] are scalars, which can be calculated based on k[0...3]
and l[0...4], as shown in the supplementary material.

3.6 CCD Tests using Bernstein Polynomials

The formulations for coplanarity and inside tests can be combined
into the following system of equations and inequalities in terms of
Bernstein polynomials:


k0 ∗B3

0(t) + k1 ∗B3
1(t) + k2 ∗B3

2(t) + k3 ∗B3
3(t) = 0,

p0 ∗B2
0(t) + p1 ∗B2

1(t) + p2 ∗B2
2(t) ≥ 0,

q0 ∗B2
0(t) + q1 ∗B2

1(t) + q2 ∗B2
2(t) ≥ 0,

r0 ∗B2
0(t) + r1 ∗B2

1(t) + r2 ∗B2
2(t) ≥ 0.

where k[0...3] and p[0...2] are scalars defined above, q[0...2] and
r[0...2] are the coefficients corresponding to 2 other inside tests.

4 CCD Query Using Sign Evaluations

In this section, we use the formulation of CCD computation in
terms of Bernstein polynomials and present accurate algorithms to
perform CCD queries. Our formulation consists of two stages:

• Geometric Coplanarity Test: By deducing the signs of the
polynomials at its extreme points and comparing with the
signs of its end points in the interval [0, 1], we can check for
the existence of roots for coplanarity equations.

• Geometric Inside Tests: During this stage, we evaluate the
signs of the inequalities at the roots that have passed copla-
narity tests to check whether these roots also satisfy the inside
tests.

4.1 Geometric Coplanarity Test

Our goal is to compute the roots of a cubic polynomial Y (t) (de-
fined by Equation (11) in domain [0, 1]). We use the characteri-
zation of Bézier curves into three different cases presented in Sec-
tion 3.2. For the Case (a) in Section 3.2, we subdivide the curve at
its inflection point, i.e. t = k2−2∗k1+k0

k0−3∗k1+3∗k2−k3
, using de Casteljau’s

algorithm. The two subdivided curves either correspond to Case (b)
or Case (c) in Section 3.2. We discuss both these cases:

• Case (b): If k0 and k3 have different signs, there is only one
root in the domain. Otherwise, we use the following Root-
Finding Lemma to determine whether there are zero roots or
two roots in the domain.

• Case (c): If k0 and k3 have the same sign, there is no root;
otherwise there is one root in its domain.

Root-Finding Lemma: For a cubic polynomial Y (t) (defined by
Equation (11)) with an extreme point in its domain, its 1st derivative
Y ′(t) is:

Y ′(t) = 3 ∗ (k1 − k0) ∗B2
0(t) + 3 ∗ (k2 − k1) ∗B2

1(t)

+ 3 ∗ (k3 − k2) ∗B2
2(t).

If Sign(Y(0)) = Sign(T(0))
         Y(t) has no root.

Else
         Y(t) has 2 roots.

Yes No
If Sign(Y’(t’)) = Sign(Y’(0))

If Sign(Y(0)) = Sign(T(1))
         Y(t) has no root.

Else
         Y(t) has 2 roots.
Else

If Sign(Y(0)) = Sign(T(0))
         Y(t) has no root.

Else
         Y(t) has 2 roots.

T(t) has a root t’ in [0, 1]?

Figure 3: Computing the Number of Roots of Y (t): We can
compute them based on sign evaluations.
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Figure 4: Evaluate the Sign of L(t̂): Based on Sign Determi-
nation Theorem I and Sign Determination Theorem II, we can
evaluate the sign of L(t̂).

We decompose Y (t) = Y ′(t) ∗ S(t) + T (t), where S(t) and T (t)
are two linear polynomials and can be calculated with the Polyno-
mial Decomposition Theorem in Section 3.2. We use the classifi-
cation in Fig. 3 to compute the number of roots of Y (t).

Based on this formulation, we can compute the number of roots for
Case (b) and Case (c), and consequently for Case (a).

4.2 Geometric Inside Tests

In order to perform a specific inside test, along with the coplanarity
test, we need to test the following system:{

Y (t) = 0,
P (t) ≥ 0.

(14)

Here Y (t) and P (t) are defined by Equation (11) and Equation
(13), respectively. We compute a similar system for the other two
inside tests.

Based on the Polynomial Decomposition Theorem in Section 3.2,
we can express:

Y (t) = L(t) ∗ P (t) +K(t), (15)

where L(t) and K(t) are linear polynomials.

Let t̂ be a root of Y (t) in the domain [0, 1], i.e. Y (t̂) = 0, t̂ ∈ [0, 1].
From Equation (15), we obtain P (t̂) = −K(t̂)/L(t̂). Therefore,
the problem of computing the sign of P (t̂) reduces to computing
the signs of K(t̂) and L(t̂).

We use following theorems to compute the signs of K(t̂) and L(t̂):



If Sign(Y(t’))    Sign(Y(0))
Sign(L(  ))     Sign(L(0))
Sign(L(  ))     Sign(L(1))

Else
If Sign(Y’(t’)) = Sign(Y’(0))

Sign(L(  ))     Sign(L(1))
Sign(L(  ))     Sign(L(1))

Else
Sign(L(  ))     Sign(L(0))
Sign(L(  ))     Sign(L(0))

If Sign(Y(t’)) = Sign(Y(0))
Sign(L(  ))     Sign(L(1))

Else
Sign(L(  ))     Sign(L(0))

t̂

t̂

≠
←

←

0̂t

0̂t

0̂t

1̂t

1̂t

1̂t

←
←

←
←

←
←

(a)

(b)

Figure 5: Rules for Evaluating the Sign of L(t̂), L(t̂0), and
L(t̂1): We use the rules in (a) and (b) for Sign Determination
Theorem I and Sign Determination Theorem II, respectively.

Sign Determination Theorem I: Let L(t) be a linear polynomial
and Y (t) be a cubic polynomial which corresponds to the Bézier
curve of Case (b) in the domain [0, 1] (Fig. 4(a)). Let:

• L(t′) = 0, and t′ ∈ [0, 1],

• Y (t̂) = 0, and t̂ ∈ [0, 1].

We can use the rules in Fig. 5(a) to evaluate the sign of L(t̂)).

Sign Determination Theorem II: Let L(t) be a linear polynomi-
al and Y (t) be a cubic polynomial that corresponds to the Bézier
curve of Case (c) in the domain [0, 1] (Fig. 4(b) and Fig. 4(c)). Let:

• L(t′) = 0, and t′ ∈ [0, 1],

• Y (t̂0) = 0 and Y (t̂1) = 0, and t̂0 ∈ [0, 1], t̂1 ∈ [0, 1], t̂0 <
t̂1,

• Y ′(t′′) = 0, and t′′ ∈ [0, 1]. Y ′(t) is the 1st order of deriva-
tive of Y (t).

We can use the rules in Fig. 5(b) to determine the sign of L(t̂0))
and L(t̂1)).

Based on Sign Determination Theorem I and Sign Determina-
tion Theorem II, we can determine the sign of L(t̂).

Sign of K(t̂): The algorithm used to compute the sign of L(t̂) can
be directly used to compute the sign of K(t̂).

Based on the signs of L(t̂) and K(t̂), we can compute the sign of
P (t̂) and consequently check whether the equality and inequality
in Equation (14) are satisfied or not. This is repeated for the other
two inequalities as well. If all of them are satisfied, then the answer
to the CCD query is positive.

4.3 Conservative Culling Test

Many times there is no collision, and we use a simple culling
scheme to accelerate the algorithm. This is similar to using the
non-penetration filter [Tang et al. 2010b] or plane-culling [Brochu
et al. 2012]. Our goal is to eliminate many VF pairs that do not sat-
isfy the coplanarity condition (see Equation (11)). One sufficient
condition is when all the coefficients k[0...3] are either greater than
zero or less than zero. Instead of computing k[0...3] exactly, we
use floating-point filters [Burnikel et al. 2001] to perform conser-
vative culling. In other words, we compute k[0...3] using floating-
point arithmetic. Instead of comparing them with zeros, we check
whether they are all greater than ε̂, or all less than −ε̂, where ε̂ is a
conservative error bound. The detailed method for computing ε̂ is
in the supplementary material.

Algorithm 1 VF-Test: CCD test for a VF pair.
Input: Positions at t = 0 and t = 1 for a deforming triangle
(a0,a1,b0,b1, c0, c1) and a moving vertex (p0,p1).
Output: True or False for has a collision or no collision in [0, 1].

1: GetCoefficients() // Get coefficients of Y (t)).
2: // Perform conservative culling test.
3: if ConservativeFilter() then
4: Return False.
5: end if
6: ctype← BezierType() // Get type of the Bézier curve.
7: // For case (a), subdivide and check on interval [0, t′] and [t′, 1].
8: // Here t′ is corresponding to the inflection point.
9: if ctype = Case A then

10: Subdivide into two intervals [0, t′] and [t′, 1].
11: Return VF-Test([0, t′]) OR VF-Test([t′, 1]).
12: end if
13: // For case (b) and case (c), continue checking.
14: // Perform Coplanarity Test (Section 4.1).
15: if !CoplanarityTest() then
16: Return False.
17: end if
18: // Perform Inside Test (Section 4.2).
19: if !InsideTest() then
20: Return False.
21: end if
22: Return True. // A valid collision has been detected.

4.4 Overall VF Query Algorithm

Our overall algorithm for VF query is described in Algorithm 1.
We first compute the coefficients of Y (t), i.e. k[0...3] (Line 1), and
perform the conservative culling test (Line 3–5). If the culling test
fails, we classify the type of Bézier curves (Line 6). For case (a), we
subdivide the interval [0, 1] into two sub-intervals [0, t′] and [t′, 1],
and recursively perform CCD tests on these sub-intervals (Line 9–
12). For case (b) and (c), we perform the coplanarity test (Line
15–17) and inside tests (Line 19–21). If all these tests are positive,
the response to VF collision query is positive (Line 22).

We use a similar algorithm for EE tests. The details of its derivation
are given in the supplementary material. The main difference with
respect to the VF test is in terms of the inequalities used for the
inside tests.

BSC-exact: Exact VF Computation: In order to perform reliable
collision queries, we use the well-known paradigm of Exact Geo-
metric Computation [Yap 2004], which is widely used for geomet-
ric computations and has also been used to perform exact Boolean
answers for CCD [Brochu et al. 2012]. The underlying philosophy
is that we compute the correct answer to these Boolean queries as-
suming that we use exact arithmetic and there are no errors due to
use of fixed precision or floating-point arithmetic or user specified
tolerances. Our exact algorithm, BSC-exact, uses a combination of
extended precision arithmetic operations and floating point filter-
s. Our conservative-culling test only uses floating point filters and
does not perform exact arithmetic operations. The rest of the com-
putations include many expressions and evaluating signs of poly-
nomials. All these computations can be accelerated using floating
point filters.

BSC-float: Floating-point Algorithm: In some cases, optimized
libraries for extended precision-arithmetic operations are not avail-
able on certain processors (e.g. GPUs). In this case, all the steps
of Algorithm 1 are implemented using floating-point arithmetic and
are prone to numerical errors. Our resulting algorithm, BSC-float,
is based on the IEEE floating-point standard.
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Figure 6: Benchmarks: We use five different benchmarks arising
from cloth and FEM simulations.

5 Implementation and Performance

In this section, we describe our implementation and highlight the
performance of our algorithm on several benchmarks.

5.1 Implementation

We have implemented our algorithms on a standard PC (Intel i7-
3770K CPU @3.5GHz, 4GB RAM, 64-bits Window 7 OS, NVIDI-
A Tesla K40c GPU). This includes a CPU-based C++ implemen-
tation of BSC-exact that uses a single core and uses an exact com-
putation library based on interval arithmetic [Brochu et al. 2012].
We have also implemented BSC-float on a CPU (with C++) and
a GPU (using CUDA 5.5) using hardware-supported floating-point
operations.

We compare the performance of our algorithms with the following
algorithms:

1. El-Topo-exact: This is the implementation of the exact algo-
rithm of [Brochu et al. 2012], made available by the authors.
It also uses plane-based culling to accelerate the computation,
along with interval arithmetic-based filters and exact expan-
sions for exact arithmetic operations. In order to compare the
performance with BSC-exact, we use the same implementa-
tion of exact arithmetic operations.

2. El-Topo-float: This is a floating-point-based cubic root solver
CCD implementation, available as part of El-Topo surface-
tracking library [Brochu and Bridson 2009]. We measured its
performance using a single thread on the CPU.

3. BSC-float-GPU and El-Topo-float-GPU: We also ported
BSC-float and El-Topo-float algorithms to GPUs and tested
their performance with multiple threads, referred to as BSC-
float-GPU and El-Topo-float-GPU, respectively.

5.2 Benchmarks

In order to test the performance of our algorithms, we used five dif-
ferent benchmarks arising from different simulation scenarios that
use CCD queries.

• Dancer: A dancer wearing a simple skirt with 5K − 10K
triangles, the number of triangles change during the simula-
tion due to adaptive computations. This benchmark has a high
number of self-collisions (Figure 6(d)).

• Twisting: A cloth with 2K − 50K triangles twists severely
as the underlying ball is rotating. This benchmark has a high
number of self-collisions (Figure 6(a)).

• Flamenco: A fiery Flamenco dancer wearing a colorful skirt
with ruffles. This benchmark (49K triangles) has many inter-
and intra-object collisions (Figure 6(c)).

• Funnel: A cloth with 2K − 42K triangles falls into a fun-
nel and folds to fit into the funnel with many self-collisions
(Figure 6(b)).

• Crashing: A Ford Explorer with 1.1M triangles crashes a-
gainst a rigid wall and the deformation is simulated using
finite-element meshing (Figure 6(e)).

The first three benchmarks (Dancer, Twisting, and Funnel) are gen-
erated by integrating our CCD algorithm into a cloth simulation
system, ArcSim [Narain et al. 2012]. The input for the Flamenco
and the Crashing benchmarks is given as discrete keyframes. We
use linear interpolation between key-frames and check for inter-
object and self-collisions. We also use BVH-based hierarchical
culling (using AABBs) to reduce the number of elementary tests.

Worst-Case Query Performance: If there is no collision, our
culling algorithm is able to discard many of those instances. The
query time is higher when there is an actual contact. The worst-
case query times for our algorithm vs. prior algorithms are:

• BSC-exact: The worst-case time for EE and VF queries are
about 876 ns. In contrast, the worst-case query times for El-
Topo-exact are 15 ms and 11µs for EE and VE queries, re-
spectively.

• BSC-float: The worst-case time for EE and VF queries are
about 105 ns. In contrast, the worst-case query times for
El-Topo-float are about 953 ns for both queries on a CPU
core. Moreover, we observe fewer incorrect query results us-
ing BSC-float.

5.3 Relative Performance on a CPU

Figure 7 highlights the performance of our algorithms, BSC-exact
and BSC-float, and compares them with two prior CCD algorithm-
s, El-Topo-exact and El-Topo-float, on a single CPU core. For all
these benchmarks, the performance of BSC-exact is about 10−25X
faster than El-Topo-exact, and offers similar reliability. Further-
more, we observe up to an order of magnitude speedup in the float-
ing point implementations. Our approach, BSC-float, involves few-
er arithmetic operations, as compared to El-Topo-float. The combi-
nation of fewer operations and improved numerical stability prop-
erties of Bernstein polynomials also improves the accuracy of BSC-
float, i.e. fewer incorrect results to the collision queries in terms of
false-negatives or false-positives.

5.4 Relative Performance on a GPU

We have also evaluated the performance on the NVIDIA Tesla K40c
GPU. We are not aware of any widely optimized extended precision
libraries on GPUs, so we only evaluated the relative performance
of BSC-float-GPU and El-Topo-float-GPU on various benchmarks.
We compared the accuracy of query results with those computed by
exact CPU-based implementations. In this case, BSC-float-GPU re-
sults in much fewer inaccurate collision queries as compared to El-
Topo-float-GPU. The internal registers used in GPUs may have dif-
ferent precision from CPUs, so we may observe considerable differ-
ences in the accuracy results of BSC-float-GPU and El-Topo-float-
GPU, as compared to their CPU counterparts. For example, many
Intel processors use 80-bit internal registers for floating-point oper-
ations, and this may result in higher accuracy for CPU-based imple-
mentations. We have also integrated BSC-float and El-Topo-float
into a GPU-based cloth simulation system [Tang et al. 2013] and
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Figure 7: Performance and Comparison: We highlight the performance of various CPU and GPU-based algorithms on different bench-
marks. We observe significant speedups using our algorithms based on BSC vs. prior algorithms implemented as part of El Topo [Provot
1997; Bridson et al. 2002; Brochu and Bridson 2009; Brochu et al. 2012]. Even though BSC-float is not guaranteed to be reliable, we observe
very high accuracy in our benchmarks, i.e. very few incorrect answers to the queries.

compared the runtime query performance of both CCD algorithms
within that system. Figure 7 highlights the performance of BSC-
float-GPU and El-Topo-float-GPU. Due to parallelism, the relative
performance improvement of BSC-float-GPU over El-Topo-float-
GPU is less than those on the CPUs.

5.5 Analysis

The computational costs of our exact CCD algorithm (BSC-exact)
varies with respect to different cases described in Section 3.2:

• Case (c): No operation cost for the coplanarity test; involves 3
polynomial decompositions and 3 polynomial evaluations (of
degree 3) for inside tests.

• Case (b): Its operation cost includes 1 polynomial decompo-
sition and 1 polynomial evaluation (of degree 2) for the copla-
narity test; 3 polynomial decompositions and 6 polynomial e-
valuations (three of degree 2 and three of degree 3) for the
inside test.

• Case (a): Its total operation cost is the sum of (c) and (b).

The overall operation count of our algorithm is much lower than
Eltopo-exact and this results in considerable speedups, as shown in
Fig. 7. Furthermore, we only perform simple arithmetic operations
such as additions, subtractions, and multiplications (see details in
the appendix). In terms of extended precision computations, the
division operations are more expensive than these three operations
and we avoid those expensive operations in our algorithm.

The first time of contact can be easily computed using root isolation
We perform mid-point subdivision (using Bernstein formulation)
recursively, after Algorithm 1 returns true. The subdivision termi-
nates when the size of the interval containing the root is less than
a user-threshold. The mid-point of the interval is used to compute
the intersection points. This takes about 30− 40 ns/query.

We also compared the performance of our solver with the Jenkins-
Traub solver 1. It is more accurate than Newton-interval solver (e.g.
used in El Topo-float), but about 3X slower. All such numeric
solvers are prone to floating-point errors and can result in false-
positives and false-negatives. In contrast, our BSC-exact algorithm
is reliable and faster than most of these numeric solvers.

6 Limitations, Conclusions and Future Work

We have presented novel algorithms to perform accurate CCD
queries between triangular meshes. We exploit properties of Bern-

1http://www.codeproject.com/Articles/552678/Polynomial-Equation-
Solver

stein functions and Bézier curves, reducing the CCD queries to e-
valuating signs of Bernstein polynomials and algebraic expressions.
We present two versions of the algorithm based on exact geomet-
ric computation and IEEE floating-point implementations. We have
implemented these algorithms on CPUs and GPUs. Our exact al-
gorithm is more than an order of magnitude faster than prior exact
algorithms. Furthermore, our floating-point variant is faster and
more accurate than prior solvers for elementary tests.

Our approach has some limitations. Our current formulation as-
sumes that the vertices move with a constant velocity. Our reli-
able algorithm assumes exact representation of vertices, edges, and
faces and does not take into account any errors in the input. Our
floating-point variant (BSC-float) is faster and more accurate than
prior methods, but it does not guarantee a safe and reliable solu-
tion. We perform only Boolean collision queries; and additional
computations based on root isolation would be needed to compute
the first-time-of-contact.

There are many avenues for future work. Besides overcoming these
limitations, it may be useful to derive a tight error bound on our
floating-point variant and the exact number of bits needed for ex-
tended precision. This would help explain its high accuracy in our
benchmarks. It would be useful to use our reliable CCD algorithm
for other applications including hair simulation and dynamic solver-
s [Zhao et al. 2012]. Finally, we would like to develop reliable al-
gorithms for high-level CCD culling and collision-response.

Acknowledgements: This research is supported in part by NS-
FC (61170140), the National Basic Research Program of China
(2011CB302205), the National Key Technology R&D Program of
China (2012BAD35B01), the Doctoral Fund of Ministry of Edu-
cation of China (20130101110133). Dinesh Manocha is supported
in part by ARO Contract W911NF-10-1-0506, Intel and the Office
Of The Director, National Institutes Of Health under Award Num-
ber R44OD018334, and the National Thousand Talents Program
of China. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National
Institutes of Health. Ruofeng Tong is partly supported by NSFC
(61170141), the National High-Tech Research and Development
Program (No.2013AA013903) of China. We gratefully acknowl-
edge the support of NVIDIA Corporation with the donation of the
Tesla K40c GPU used for this research.

References

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Trans. Graph. 21, 3 (July), 594–603.



BROCHU, T., AND BRIDSON, R. 2009. Robust topological opera-
tions for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4
(June), 2472–2493.

BROCHU, T., EDWARDS, E., AND BRIDSON, R. 2012. Efficient
geometrically exact continuous collision detection. ACM Trans.
Graph. 31, 4 (July), 96:1–96:7.

BURNIKEL, C., FUNKE, S., AND SEEL, M. 2001. Exact geometric
computation using cascading. International J. Comp. Geometry
and Applications 11, 3, 245–266. Special Issue.

CURTIS, S., TAMSTORF, R., AND MANOCHA, D. 2008. Fast
collision detection for deformable models using representative-
triangles. In SI3D ’08: Proceedings of the 2008 Symposium on
Interactive 3D graphics and games, 61–69.

FARIN, G. 2002. Curves and surfaces for CAGD: a practical guide,
5th ed. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

FAROUKI, R. T., AND RAJAN, V. T. 1987. On the numerical
condition of polynomials in berstein form. Comput. Aided Geom.
Des. 4, 3 (Nov.), 191–216.

GOVINDARAJU, N., KNOTT, D., JAIN, N., KABUL, I., TAM-
STORF, R., GAYLE, R., LIN, M., AND MANOCHA, D. 2005.
Interactive collision detection between deformable models using
chromatic decomposition. ACM Trans. on Graphics (Proc. of
ACM SIGGRAPH) 24, 3, 991–999.

HARMON, D., VOUGA, E., TAMSTORF, R., AND GRINSPUN, E.
2008. Robust treatment of simultaneous collisions. SIGGRAPH
(ACM Transactions on Graphics) 27, 3, 1–4.

HUTTER, M., AND FUHRMANN, A. 2007. Optimized continu-
ous collision detection for deformable triangle meshes. In Proc.
WSCG ’07, 25–32.

KIM, B., AND ROSSIGNAC, J. 2003. Collision prediction for poly-
hedra under screw motions. In Proceedings of the eighth ACM
symposium on Solid modeling and applications, SM ’03, 4–10.

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge Univer-
sity Press.

MEZGER, J., KIMMERLE, S., AND ETZMUβ , O. 2003. Hierarchi-
cal techniques in cloth detection for cloth animation. Journal of
WSCG 11, 1, 322–329.

MOURRAIN, B., ROUILLIER, F., AND ROY, M.-F. 2005. The
Bernstein basis and real root isolation. In Combinatorial and
Computational Geometry, MSRI Publications, 459–478.

NARAIN, R., SAMII, A., AND O’BRIEN, J. F. 2012. Adaptive
anisotropic remeshing for cloth simulation. ACM Trans. Graph.
31, 6 (Nov.), 152:1–152:10.

PABST, S., KOCH, A., AND STRASSER, W. 2010. Fast and s-
calable CPU/GPU collision detection for rigid and deformable
surfaces. Computer Graphics Forum 29, 5, 1605–1612.

PROVOT, X. 1997. Collision and self-collision handling in cloth
model dedicated to design garments. In Graphics Interface, 177–
189.

REDON, S., KHEDDAR, A., AND COQUILLART, S. 2002. Fast
continuous collision detection between rigid bodies. Proc. of
Eurographics (Computer Graphics Forum) 21, 3, 279–288.
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1 Proofs

In this supplementary document, we provide proofs of various lem-
mas, theorems and corollaries used in the paper.

Inflection Point Existence Lemma: For a cubic polynomial
Y (t) = k0 ∗ B3

0(t) + k1 ∗ B3
1(t) + k2 ∗ B3

2(t) + k3 ∗ B3
3(t),

its 2nd order derivative Y ′′(t) is:

Y ′′(t) = 6 ∗ (k2 − 2 ∗ k1 + k0) ∗B1
0(t)

+ 6 ∗ (k3 − 2 ∗ k2 + k1) ∗B1
1(t).

If the two scalars (k2 − 2 ∗ k1 + k0) and (k3 − 2 ∗ k2 + k1) have
different signs, there is an inflection point, otherwise there is no
inflection point in t ∈ [0, 1].

Proof. The inflection point corresponds to the root of Y ′′(t). If the
two scalars (k2−2∗k1 +k0) and (k3−2∗k2 +k1) have different
signs, there is one root for Y ′′(t), i.e. an inflection point, otherwise
there is no inflection point in t ∈ [0, 1].

Extreme Point Existence Lemma: For a cubic polynomial Y (t)
(defined as above), its 1st derivative Y ′(t) is:

Y ′(t) = 3 ∗ (k1 − k0) ∗B2
0(t) + 3 ∗ (k2 − k1) ∗B2

1(t)

+ 3 ∗ (k3 − k2) ∗B2
2(t).

If there is no inflection point in its domain and the two scalars (k1−
k0 and k3 − k2) have different signs, there is an extreme point,
otherwise there is no extreme point in t ∈ [0, 1].

Proof. If there is no inflection point (i.e. no root for Y ′′(t) = 0) in
[0, 1], Y ′(t) is monotonic in the domain. It the two scalars (k1−k0
and k3 − k2) have different signs, there is a root of Y ′(t) = 0 in
[0, 1], which corresponds to an extreme point. Otherwise there is
no extreme point in [0, 1].

Polynomial Decomposition Theorem: Let G(t) and H(t) be a
cubic polynomial and a quadratic polynomial, respectively:

G(t) = i0 ∗B3
0(t) + i1 ∗B3

1(t) + i2 ∗B3
2(t) + i3 ∗B3

3(t),

H(t) = j0 ∗B2
0(t) + j1 ∗B2

1(t) + j2 ∗B2
2(t). (1)

G(t) can be decomposed as:

G(t) = L(t) ∗H(t) +K(t), (2)

∗e-mail:{tang m,trf,westernseawolf}@zju.edu.cn
†e-mail:dm@cs.unc.edu

where L(t) and K(t) are two linear polynomials:

L(t) = u0 ∗B1
0(t) + u1 ∗B1

1(t),

K(t) = v0 ∗B1
0(t) + v1 ∗B1

1(t), (3)

where u[0,1] and v[0,1] can be calculated from i[0...3] and j[0...2].

Proof. This can be proven by substituting the algebraic expression-
s.

L(t) ∗H(t) = (j0 ∗B2
0(t) + j1 ∗B2

1(t) + j2 ∗B2
2(t))

∗ (u0 ∗B1
0(t) + u1 ∗B1

1(t))

= u0 ∗ j0 ∗B3
0(t)

+
2 ∗ u0 ∗ j1 + u1 ∗ j0

3
∗B3

1(t)

+
u0 ∗ j2 + 2 ∗ u1 ∗ j1

3
∗B3

2(t)

+ u1 ∗ j2 ∗B3
3(t). (4)

Moreover,

K(t) = K(t) ∗ (1− t+ t)2

= (v0 ∗B1
0(t) + v1 ∗B1

1(t))

∗ (B2
0(t) +B2

1(t) +B2
2(t))

= v0 ∗B3
0(t) +

2 ∗ v0 + v1
3

∗B3
1(t)

+
v0 + 2 ∗ v1

3
∗B3

2(t) + v1 ∗B3
3(t). (5)

From Equation (4) and Equation (5), we obtain:

L(t) ∗ H(t) +K(t)

= (u0 ∗ j0 + v0) ∗B3
0(t)

+
2 ∗ u0 ∗ j1 + u1 ∗ j0 + 2 ∗ v0 + v1

3
∗B3

1(t)

+
u0 ∗ j2 + 2 ∗ u1 ∗ j1 + v0 + 2 ∗ v1

3
∗B3

2(t)

+ (u1 ∗ j2 + v1) ∗B3
3(t). (6)

Based on Equation (1) and Equation (2), we obtain:

i0 = u0 ∗ j0 + v0 (7)

i1 =
2 ∗ u0 ∗ j1 + u1 ∗ j0 + 2 ∗ v0 + v1

3
(8)

i2 =
u0 ∗ j2 + 2 ∗ u1 ∗ j1 + v0 + 2 ∗ v1

3
(9)

i3 = u1 ∗ j2 + v1. (10)



From Equation (7) and Equation (10), we obtain:

v0 = i0 − u0 ∗ j0
v1 = i3 − u1 ∗ j2.

We substitute these expressions into Equation (8) and Equation (9)
and obtain:

3 ∗ i1 = 2 ∗ u0 ∗ j1 + u1 ∗ j0 + 2 ∗ v0 + v1

= 2 ∗ u0 ∗ j1 + u1 ∗ j0
+ 2 ∗ (i0 − u0 ∗ j0) + i3 − u1 ∗ j2

3 ∗ i2 = u0 ∗ j2 + 2 ∗ u1 ∗ j1 + v0 + 2 ∗ v1
= u0 ∗ j2 + 2 ∗ u1 ∗ j1
+ i0 − u0 ∗ j0 + 2 ∗ (i3 − u1 ∗ j2)

After rearranging the equations, we obtain:

2 ∗ (j1 − j0) ∗ u0 + (j0 − j2) ∗ u1 = 3 ∗ i1 − 2 ∗ i0 − i3
(j2 − j0) ∗ u0 + 2 ∗ (j1 − j2) ∗ u1 = 3 ∗ i2 − 2 ∗ i3 − i0

This can be expressed as:

u0 =

∣∣∣∣ 2 ∗ (j1 − j2) j0 − j2
3 ∗ i2 − 2i3 − i0 3 ∗ i1 − 2 ∗ i0 − i3

∣∣∣∣∣∣∣∣ 2 ∗ (j1 − j2) j0 − j2
j2 − j0 2 ∗ (j1 − j0)

∣∣∣∣ ,

u1 =

∣∣∣∣ 2 ∗ (j1 − j0) j2 − j0
3 ∗ i1 − 2 ∗ i0 − i3 3 ∗ i2 − 2i3 − i0

∣∣∣∣∣∣∣∣ 2 ∗ (j1 − j2) j0 − j2
j2 − j0 2 ∗ (j1 − j0)

∣∣∣∣ ,

v0 = i0 − u0 ∗ j0,
v1 = i3 − u1 ∗ j2.

Coplanarity Test Theorem for a VF Pair: For a deforming trian-
gle, whose initial and final positions are given as (a0,b0, c0) and
(a1, b1, c1) and a vertex with initial and final positions as p0 and
p1, the coplanarity test can be formulated as:

Y (t) = (pt − at) · nt

= k0 ∗B3
0(t) + k1 ∗B3

1(t) + k2 ∗B3
2(t) + k3 ∗B3

3(t), (11)

where k[0..3] are scalars:

k0 = (p0 − a0) · n0, k3 = (p1 − a1) · n1,

k1 = (2 ∗ (p0 − a0) · n̂ + (p1 − a1) · n0)/3,

k2 = (2 ∗ (p1 − a1) · n̂ + (p0 − a0) · n1)/3.

and

n0 = (b0 − a0)× (c0 − a0), n1 = (b1 − a1)× (c1 − a1),

n̂ = (n0 + n1 − (vb − va)× (vc − va)) ∗ 0.5,

va = a1 − a0, vb = b1 − b0, vc = c1 − c0.

Proof. The normal vector nt of the deforming triangle at time t can
be represented as following:

nt = n0 ∗B2
0(t) + n̂ ∗B2

1(t) + n1 ∗B2
2(t), (12)

where B2
i (t) is the ith basis function of the Bernstein polynomials

of degree 2.

We define: α = B2
0(t) = (1 − t)2, β = B2

1(t) = 2 ∗ t ∗ (1 − t),
and γ = B2

2(t) = t2. As a result, Equation (12) becomes:

nt = n0 ∗ α+ n̂ ∗ β + n1 ∗ γ.

Given the moving vertex pt = p0 ∗ (1− t) +p1 ∗ t and a vertex of
the deforming triangle at = a0 ∗ (1 − t) + a1 ∗ t, their projected
distance along nt is:

(pt − at) · nt = ((p0 − a0) ∗ (1− t) + (p1 − a1) ∗ t) · nt

= ((p0 − a0) ∗ (1− t) + (p1 − a1) ∗ t)
·(n0 ∗ α+ n̂ ∗ β + n1 ∗ γ)

= (p0 − a0) · n0 ∗ (1− t) ∗ α
+ (p0 − a0) · n̂ ∗ (1− t) ∗ β
+ (p0 − a0) · n1 ∗ (1− t) ∗ γ
+ (p1 − a1) · n1 ∗ t ∗ γ
+ (p1 − a1) · n̂ ∗ t ∗ β
+ (p1 − a1) · n0 ∗ t ∗ α.

We substitute α, β, and γ and obtain:

(pt − at) · nt = (p0 − a0) · n0 ∗ (1− t)3

+ (p0 − a0) · n̂ ∗ 2 ∗ (1− t)2 ∗ t
+ (p0 − a0) · n1 ∗ (1− t) ∗ t2

+ (p1 − a1) · n1 ∗ t3

+ (p1 − a1) · n̂ ∗ 2 ∗ t2 ∗ (1− t)
+ (p1 − a1) · n0 ∗ t ∗ (1− t)2. (13)

Base on Equation (11), we have the k0, k1, k2, and k3:

k0 = (p0 − a0) · n0, k3 = (p1 − a1) · n1,

k1 = (2 ∗ (p0 − a0) · n̂ + (p1 − a1) · n0)/3,

k2 = (2 ∗ (p1 − a1) · n̂ + (p0 − a0) · n1)/3.

Inside Test Theorem for a VF Pair: Given the triangle and the
vertex defined by start and end positions over the interval [0, 1], the
inside test can be formulated as:

((bt − pt)× (ct − pt)) · nt = l0 ∗B4
0(t) + l1 ∗B4

1(t)

+l2 ∗B4
2(t) + ∗l3 ∗B4

3(t) + l4 ∗B4
4(t),(14)

where l[0...4] are scalars:

l0 = m0 · n0, l1 =
m0 · n̂ + m̂ · n0

2
, l3 =

m̂ · n1 + m1 · n̂
2

,

l2 =
m0 · n1 + 4 ∗ m̂ · n̂ + m1 · n0

6
, l4 = m1 · n1,

and

n0 = (b0 − a0)× (c0 − a0), n1 = (b1 − a1)× (c1 − a1),

n̂ = (n0 + n1 − (vb − va)× (vc − va)) ∗ 0.5,

m0 = (b0 − p0)× (c0 − p0), m1 = (b1 − p1)× (c1 − p1),

m̂ = (m0 + m1 − (vb − vp)× (vc − vp)) ∗ 0.5,

va = a1 − a0, vb = b1 − b0, vc = c1 − c0, vp = p1 − p0.



Proof. Its proof is similar to the proof of Coplanarity Test
Theorem for a VF Pair. We can replace (pt − at) with
((bt − pt)× (ct − pt)).

Simplified Inside Test Theorem for a VF pair: Based on combin-
ing Inequality G(t) ≥ 0 with Equation Y (t) = 0 and algebraic
manipulation, this inside test can be reduced to the following lower
degree constraint:

P (t) = p0 ∗B2
0(t) + p1 ∗B2

1(t) + p2 ∗B2
2(t) ≥ 0, (15)

where:

Y (t) = k0 ∗B3
0(t) + k1 ∗B3

1(t) + k2 ∗B3
2(t) + k3 ∗B3

3(t).

G(t) = l0 ∗B4
0(t) + l1 ∗B4

1(t)

+l2 ∗B4
2(t) + ∗l3 ∗B4

3(t) + l4 ∗B4
4(t)

and p[0...2] are scalars, which can be calculated based on k[0...3]
and l[0...4].

Proof. We have:

Y (t) = k0∗B3
0(t)+k1∗B3

1(t)+k2∗B3
2(t)+k3∗B3

3(t) = 0 (16)

and:

Y (t) = k′0 ∗B4
0(t) + k′1 ∗B4

1(t) + k′2 ∗B4
2(t)

+ k′3 ∗B4
3(t) + k′4 ∗B4

4(t) = 0. (17)

Here:

k′0 = k0, k
′
1 =

k0 + 3 ∗ k1
4

, k′2 =
k1 + k2

2

k′3 =
3 ∗ k2 + k3

4
, k′4 = k3.

We obtain

G(t) ∗ k′0 − Y (t) ∗ l0 =

(l1 ∗ k′0 − l0 ∗ k′1) ∗B4
1(t) +

(l2 ∗ k′0 − l0 ∗ k′2) ∗B4
2(t) +

(l3 ∗ k′0 − l0 ∗ k′3) ∗B4
3(t) +

(l4 ∗ k′0 − l0 ∗ k′4) ∗B4
4(t). (18)

This Equation can be expressed as:

s0 ∗B3
0(t) + s1 ∗B3

1(t) + s2 ∗B3
2(t) + s3 ∗B3

3(t). (19)

Here:

s0 = (l1 ∗ k′0 − l0 ∗ k′1) ∗ 4

s1 = (l2 ∗ k′0 − l0 ∗ k′2) ∗ 2

s2 =
(l3 ∗ k′0 − l0 ∗ k′3) ∗ 4

3

s3 = l4 ∗ k′0 − l0 ∗ k′4 (20)

And:

(G(t) ∗ k′0 − Y (t) ∗ l0) ∗ k0 − Y (t) ∗ s0 =

(s1 ∗ k0 − s0 ∗ k1) ∗B3
1(t) +

(s2 ∗ k0 − s0 ∗ k2) ∗B3
2(t) +

(s3 ∗ k0 − s0 ∗ k3) ∗B3
3(t). (21)

t̂
0

t′

)(tY

1

Figure 1: Side Determination Theorem I: Given a t′ ∈ [0, 1], if
Y (t′) has the same sign of Y (0), then t′ < t̂, else t′ > t̂.

If Sign(Y(0)) = Sign(T(0))
         Y(t) has no root.

Else
         Y(t) has 2 roots.

Yes No
If Sign(Y’(t’)) = Sign(Y’(0))

If Sign(Y(0)) = Sign(T(1))
         Y(t) has no root.

Else
         Y(t) has 2 roots.
Else

If Sign(Y(0)) = Sign(T(0))
         Y(t) has no root.

Else
         Y(t) has 2 roots.

T(t) has a root t’ in [0, 1]?

Figure 2: Computing the Number of Roots of Y (t): We can
compute them based on sign evaluations.

This Equation can be expressed as:

p0 ∗B2
0(t) + p1 ∗B2

1(t) + p2 ∗B2
2(t). (22)

Here:

p0 = (s1 ∗ k0 − s0 ∗ k1) ∗ 3

p1 =
(s2 ∗ k0 − s0 ∗ k2) ∗ 3

2
p2 = s3 ∗ k0 − s0 ∗ k3 (23)

Sine Y (t) = 0, we have:

P (t) = (G(t) ∗ k′0 − Y (t) ∗ l0) ∗ k0 − Y (t) ∗ s0
= G(t) ∗ k′0 ∗ k0 = G(t) ∗ k0 ∗ k0.

So P (t) has the same sign of G(t).

Side Determination Theorem I: Given a polynomial Y (t), which
has only one root t̂ ∈ [0, 1] and Y (t̂) = 0. Sign(Y (0)) 6=
Sign(Y (1)). Given a t′ ∈ [0, 1], if Y (t′) has the same sign as
Y (0), then t′ < t̂, otherwise t′ > t̂.

Proof. We prove it using contradiction: If Y (t′) has the same sign
of Y (0) and t′ > t̂, then in the interval [t′, 1], Sign(Y (t′)) 6=
Sign(Y (1)). Since Y(t) is a continuous function, it must have an-
other root in the domain [t′, 1]. This is contradictory to the fact that
(̂t) is the only root in the domain [0, 1].

Root Finding Lemma: For a cubic polynomial Y (t) with an ex-
treme point in its domain, its 1st derivative Y ′(t) is:

Y ′(t) = 3 ∗ (k1 − k0) ∗B2
0(t) + 3 ∗ (k2 − k1) ∗B2

1(t)

+ 3 ∗ (k3 − k2) ∗B2
2(t).
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Figure 3: Sign Determination Theorem II: For a t′ ∈ [0, 1], if
Y (t′) has the same sign of Y (0), then t′ < t̂, else t′ > t̂.

We have Y (t) = Y ′(t)∗L(t)+K(t), whereL(t) andK(t) are two
linear polynomials and can be calculated with the Polynomial De-
composition Theorem. We can use the rules in Fig. 2 to compute
the number of roots of Y (t).

Proof. We define t′′ as the only root of Y ′(t), i.e., Y ′(t′′) = 0.
We need to determine the sign of Y (t′′). If Sign(Y (t′′)) =
Sign(Y (0)) then Y (t) has no root, otherwise Y (t) must have two
roots in [0, 1]. Since Y (t′′) = Y ′(t′′) ∗ L(t′′) +K(t′′) = K(t′′),
Sign(Y (t′′)) = Sign(K(t′′)). So we need to determine the sign
of K(t′′).

If K(t) has no root in [0, 1], then Sign(K(t′′)) = Sign(K(0)).

Otherwise, let t′ be the only root of K(t) in [0, 1]. Based
on the Side Determination Theorem I, if Sign(Y ′(t′)) =
Sign(Y ′(0)), t′ < t′′, else t′ > t′′. If t′ < t′′,
then Sign(K(t′′)) = Sign(K(1)), else Sign(K(t′′)) =
Sign(K(0)).

Side Determination Theorem II: For a given polynomial Y (t),
in a domain [0, 1] which has two roots t̂0 and t̂1. Sign(Y (0)) =
Sign(Y (1)). For t′ ∈ [0, 1], if Y (t′) has a different sign than
Y (0) (Fig. 3(a)), then t̂0 < t′ < t̂1, otherwise t̂0, t̂1 are on the
same side of t′ (Fig. 3(b)).

Proof. If Y (t′) has a different sign as compared to Y (0), then t′ ∈
[t̂0, t̂1]; otherwise:

• If t′ < t̂0, Sign(Y (t′)) 6= Sign(Y (0)), there is another root
in the interval [0, t’], this contradicts the fact Y (t) has two
roots.

• If t′ > t̂1, Sign(Y (t′)) 6= Sign(Y (1)), there is another root
in the interval [t’, 1], this contradicts the fact that Y (t) has
two roots.

If Sign(Y (t′)) = Sign(Y (0)) = Sign(Y (1)), then t′ 3 [t̂0, t̂1],
otherwise, Sign(Y (t′)) = Sign(Y (t′′)). This contradicts the fact
that Sign(Y (0)) 6= Sign(Y (t′′)), where t′′ is the extreme point.

Sign Determination Theorem I: Let L(t) be a linear polynomial
and Y (t) be a cubic polynomial which corresponds to the Bézier
curve of Case (b) (Section 3.2) in the domain [0, 1]. Let:

• L(t′) = 0, and t′ ∈ [0, 1].

• Y (t̂) = 0, and t̂ ∈ [0, 1].

We have:

If Sign(Y (t′)) = Sign(Y (0))

Sign(L(t̂)) = Sign(L(1))

Else

Sign(L(t̂)) = Sign(L(0))

Endif

Proof. With Side Determination Theorem I, we have: if
Sign(Y (t′)) = Sign(Y (0)), then t′ < t̂ ⇒ Sign(L(t̂) =

Sign(L(1)), else t′ > t̂⇒ Sign(L((̂t)) = Sign(L(0)).

Sign Determination Theorem II: Let L(t) be a linear polynomial
and Y (t) be a cubic polynomial which corresponds to the Bézier
curve of Case (c) in the domain [0, 1]. Let:

• L(t′) = 0, and t′ ∈ [0, 1].

• Y (t̂0) = 0 and Y (t̂1) = 0, and t̂0 ∈ [0, 1], t̂1 ∈ [0, 1], t̂0 <
t̂1.

• Y ′(t′′) = 0, and t′′ ∈ [0, 1]. Y ′(t) is the 1st order derivative
of Y (t).

We have:

If Sign(Y (t′)) 6= Sign(Y (0))

Sign(L(t̂0)) = Sign(L(0))

Sign(L(t̂1)) = Sign(L(1))

Else

If Sign(Y ′(t′)) = Sign(Y ′(0))

Sign(L(t̂0)) = Sign(L(1))

Sign(L(t̂1)) = Sign(L(1))

Else

Sign(L(t̂0)) = Sign(L(0))

Sign(L(t̂1)) = Sign(L(0))

Endif

Endif

Proof. With Side Determination Theorem II, we have: If
Sign(Y (t′)) 6= Sign(Y (0)), then t̂0 < t′ < t̂1 ⇒
Sign(L(t̂0) = Sign(L(0)) and Sign(L(t̂1) = Sign(L(1)).
Otherwise, t̂0, t̂1, and t′′ are at the same side of t′, and with Side
Determination Theorem I, we obtain:

if Sign(Y ′(t′)) = Sign(Y ′(0)), then t′ < t′′, otherwise t′ > t′′.

t′ < t′′ ⇒ t′ < t̂0 and t′ < t̂1 ⇒ Sign(L(t̂0)) = Sign(L(1))
and Sign(L(t̂1)) = Sign(L(1)).

t′ > t′′ ⇒ t′ > t̂0 and t′ > t̂1 ⇒ Sign(L(t̂0)) = Sign(L(0))
and Sign(L(t̂1)) = Sign(L(0)).

2 Error Bound for Conservative Culling

The conservative culling algorithm is described in Section 4.3. It
uses a floating-point filter and we present an error-bound for that



filter. Since our computation only uses addition, substraction, and
multiple operations, it is relatively simple to derive such a bound.

According to the IEEE 754 standard, given an exact arithmetic
operator × and its floating point counterpart

⊗
, a × b =

ROUND(a
⊗
b) and |a

⊗
b − a × b| ≤ |a × b| ∗ ε. For the

double precision format, ε = 2−52.

We use following rules to evaluate the error bounds for addi-
tion/subtraction and , repsetively:

Rule I: Error bound for addition/substraction: Give two num-
bers with rounding errors, i.e. a + c1 ∗ ε and b + c2 ∗ ε, rounding
error of the addition/substration operation on them will be bounded
by:

∆ = (a+ c1 ∗ ε)± (b+ c2 ∗ ε)
+ ||(a+ c1 ∗ ε)± (b+ c2 ∗ ε)|| ∗ ε
= a± b+ (c1 ± c2) ∗ ε+ ||a± b||) ∗ ε+O(ε2)

< a± b+ (c1 ± c2) ∗ ε+ (||a± b||+ 1) ∗ ε (24)

The accumulate rounding error is bounded by (c1±c2+ ||a±b||+
1) ∗ ε.

Rule II: Error bound for multiply operation: The multiple of
a+ c1 ∗ ε and b+ c2 ∗ ε is ∆ (with rounding error):

∆ = (a+ c1 ∗ ε) ∗ (b+ c2 ∗ ε)
+ ||(a+ c1 ∗ ε) ∗ (b+ c2 ∗ ε)|| ∗ ε
= a ∗ b+ (b ∗ c1 + a ∗ c2 + ||a ∗ b||) ∗ ε+O(ε2)

< a ∗ b+ (b ∗ c1 + a ∗ c2 + ||a ∗ b||+ 1) ∗ ε (25)

The accumulative rounding error is bounded by (b ∗ c1 + a ∗ c2 +
||a ∗ b||+ 1) ∗ ε.

In order to perform conservative culling, we need to test the signs
of

k0 = (p0 − a0) · n0, k3 = (p1 − a1) · n1,

k1 = (2 ∗ (p0 − a0) · n̂ + (p1 − a1) · n0)/3,

k2 = (2 ∗ (p1 − a1) · n̂ + (p0 − a0) · n1)/3.

and

n0 = (b0 − a0)× (c0 − a0), n1 = (b1 − a1)× (c1 − a1),

n̂ = (n0 + n1 − (vb − va)× (vc − va)) ∗ 0.5,

va = a1 − a0, vb = b1 − b0, vc = c1 − c0.

Let nv = (vb − va)× (vc − va), for k1 and k2, it is equivalent
to testing:

k′1 = 2 ∗ (p0 − a0) · n̂ + (p1 − a1) · n0

= (p0 − a0) · (n0 + n1 − (vb − va)× (vc − va))

+ (p1 − a1) · n0,

= (p0 − a0) · (n0 + n1 − nv) + (p1 − a1) · n0,

(26)

Similarly, we have:

k′2 = (p1 − a1) · (n0 + n1 − nv) + (p0 − a0) · n1. (27)

For k0, k′1, k′2, k3, their rounding errors are sum of i× j · k, where
i, j, and k are vectors, and

i× j · k = iy ∗ jz ∗ kx − iz ∗ jy ∗ kx
+ iz ∗ jx ∗ ky − ix ∗ jz ∗ ky
+ ix ∗ jy ∗ kz − iy ∗ jx ∗ kz

(a) VF Inside Test (b) EE Inside Test

ta

ta

tb

tc tp

tb
tc

td

Figure 4: Inside Tests: For VF and EE pairs, we need to per-
form inside tests to check if the vertex is inside the triangle, or the
two edges are intersecting with each other, when their vertices are
coplanar.

We use the Rule I and Rule II to accumulate the rounding errors,
and compute the error bounds for k0, k′1, k′2, k3 on-the-fly. These
dynamically computed error bounds are used by the filtering algo-
rithm.

3 EE Query Algorithm

As shown in Fig. 4(b), in order to perform an inside test for a EE
pair, we need to perform three one-sided tests to make sure the t-
wo edges, atbt and ctdt, intersect with each other. This can be
expressed based on the following inequalities:

((bt − dt)× (ct − dt)) · nt ≥ 0, (28)
((ct − dt)× (at − dt)) · nt ≥ 0, (29)
((at − dt)× (bt − dt)) · nt ≤ 0. (30)

The only different between EE query algorithm vs VF query algo-
rithm is to use these inequalities for the inside tests. The rest of the
formulation and algorithm structure is the same.

4 Avoiding Division Operations

A key aspect of the algorithm is that we don’t perform any division
operations. In practice, division operations are more expensive in
the context of extended precision computation and it is harder to
obtain tight error bounds for floating-point filters.

For a linear polynomial L(t) = a ∗ B1
0(t) + b ∗ B1

1(t), its root is
give t′ = a

a−b
. We do not need to perform the division by (a− b),

since we only need to:

• Check if L(t) has a root in [0, 1]: We can check the signs
of a, b. If they have the same sign, there is no root in [0, 1],
otherwise, there is 1 root in [0, 1].

• Evaluate Y (t′), where Y (t) is a cubic or quadratic poly-
nomial in Bernstein form. In our algorithm, we only need
to know the sign of Y(t). For a cubic polynomial: If
(a − b) > 0, Sign(Y ( a

a−b
) = Sign(Y (a)), otherwise

Sign(Y ( a
a−b

) = −Sign(Y (a)). For a quadratic polyno-
mial, Sign(Y ( a

a−b
) = Sign(Y (a)).

In both these cases, we can compute the signs of the expression
without explicitly performing a division operations.
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